These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36839104)

  • 1. Laser-Heat Surface Treatment of Superwetting Copper Foam for Efficient Oil-Water Separation.
    Wang Q; Liu C; Wang H; Yin K; Yu Z; Wang T; Ye M; Pei X; Liu X
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closed Pore Structured NiCo
    Li Y; Zheng X; Yan Z; Tian D; Ma J; Zhang X; Jiang L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29177-29184. PubMed ID: 28799749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond Laser Microfabrication of Porous Superwetting Materials for Oil/Water Separation: A Mini-Review.
    Feng N; Yong J
    Front Chem; 2020; 8():585723. PubMed ID: 33102449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of Chemical Surface Treatment for Laser-Textured Metal Alloys to Achieve Extreme Wetting Behavior.
    Samanta A; Huang W; Chaudhry H; Wang Q; Shaw SK; Ding H
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):18032-18045. PubMed ID: 32208599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired Superhydrophobic/Superhydrophilic Janus Copper Foam for On-Demand Oil/Water Separation.
    Liu C; Peng Y; Huang C; Ning Y; Shang J; Li Y
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11981-11988. PubMed ID: 35220721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast nano-structuring of superwetting Ti foam with robust antifouling and stability towards efficient oil-in-water emulsion separation.
    Yang S; Yin K; Wu J; Wu Z; Chu D; He J; Duan JA
    Nanoscale; 2019 Oct; 11(38):17607-17614. PubMed ID: 31329193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Review of Smart Superwetting Surfaces Based on Shape-Memory Micro/Nanostructures.
    Bai X; Gou X; Zhang J; Liang J; Yang L; Wang S; Hou X; Chen F
    Small; 2023 Apr; 19(15):e2206463. PubMed ID: 36609999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine Switching between Underwater Superoleophilicity and Underwater Superoleophobicity while Maintaining Superhydrophobicity.
    Tie L; Zhao S; Guo Z; Li J
    Langmuir; 2020 Apr; 36(13):3300-3307. PubMed ID: 32191489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corrosion resistance for superwetting immiscible oil/water separation porous materials.
    Rong W; Zhang H; Tuo Y; Chen W; Liu X
    RSC Adv; 2019 Apr; 9(23):12854-12863. PubMed ID: 35520797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programming Multiphase Media Superwetting States in the Oil-Water-Air System: Evolutions in Hydrophobic-Hydrophilic Surface Heterogeneous Chemistry.
    Sun Y; Guo Z
    Adv Mater; 2020 Nov; 32(46):e2004875. PubMed ID: 33463790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superhydrophobic cuprous oxide nanostructures on phosphor-copper meshes and their oil-water separation and oil spill cleanup.
    Kong LH; Chen XH; Yu LG; Wu ZS; Zhang PY
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2616-25. PubMed ID: 25590434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Special Superwetting Materials from Bioinspired to Intelligent Surface for On-Demand Oil/Water Separation: A Comprehensive Review.
    Yang Y; Guo Z; Liu W
    Small; 2022 Dec; 18(48):e2204624. PubMed ID: 36192169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast Fabrication of Metal-Organic Framework-Functionalized Superwetting Membrane for Multichannel Oil/Water Separation and Floating Oil Collection.
    Wang M; Zhang Z; Wang Y; Zhao X; Men X; Yang M
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25512-25520. PubMed ID: 32408734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational design of materials interface at nanoscale towards intelligent oil-water separation.
    Ge M; Cao C; Huang J; Zhang X; Tang Y; Zhou X; Zhang K; Chen Z; Lai Y
    Nanoscale Horiz; 2018 May; 3(3):235-260. PubMed ID: 32254075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-Induced Switchable Superwettability of Efficient Antibacterial Fabrics for Durable Selective Oil/Water Separation.
    Fu Y; Jin B; Zhang Q; Zhan X; Chen F
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30161-30170. PubMed ID: 28805055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Customization of surface wettability of nano-SiO
    Baig U; Faizan M; Dastageer MA; Gondal MA
    Chemosphere; 2022 Dec; 308(Pt 3):136405. PubMed ID: 36116624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Fabrication of Superhydrophobic Copper- Foam and Electrospinning Polystyrene Fiber for Combinational Oil⁻Water Separation.
    Zhang YP; Yang JH; Li LL; Cui CX; Li Y; Liu SQ; Zhou XM; Qu LB
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superwetting Oil/Water Separation Membrane Constructed from In Situ Assembled Metal-Phenolic Networks and Metal-Organic Frameworks.
    Wang R; Zhao X; Jia N; Cheng L; Liu L; Gao C
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):10000-10008. PubMed ID: 32013382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticles modified graphene foam with superhydrophobicity and superoleophilicity for oil-water separation.
    Liu S; Wang S; Wang H; Lv C; Miao Y; Chen L; Yang S
    Sci Total Environ; 2021 Mar; 758():143660. PubMed ID: 33248768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable Superwetting Meshes for On-Demand Separation of Immiscible Oil/Water Mixtures and Emulsions.
    Liu M; Hou Y; Li J; Guo Z
    Langmuir; 2017 Apr; 33(15):3702-3710. PubMed ID: 28345927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.