These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36839134)

  • 21. Broadband continuous/discrete spectrum optical absorber using graphene-wrapped fractal oligomers.
    Raad SH; Atlasbaf Z
    Opt Express; 2020 Jun; 28(12):18049-18058. PubMed ID: 32680006
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultra-broadband perfect absorber using triple-layer nanofilm in a long-wave near-infrared regime.
    Kuang K; Wang Q; Yuan X; Yu L; Liang Y; Zhang Y; Peng W
    Appl Opt; 2022 Sep; 61(26):7706-7712. PubMed ID: 36256371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultra-Broadband High-Efficiency Solar Absorber Based on Double-Size Cross-Shaped Refractory Metals.
    Li H; Niu J; Zhang C; Niu G; Ye X; Xie C
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32204359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visible and Near-Infrared Broadband Absorber Based on Ti
    Jia Y; Wu T; Wang G; Jiang J; Miao F; Gao Y
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands.
    Gao H; Zhou D; Cui W; Liu Z; Liu Y; Jing Z; Peng W
    J Opt Soc Am A Opt Image Sci Vis; 2019 Feb; 36(2):264-269. PubMed ID: 30874104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring the Absorption Spectra of an Ultra-Wideband Metamaterial Absorber in the Visible and Near-Infrared Regions.
    Tharwat MM; Alsulami AR; Mahros AM
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Broadband visible-light absorber via hybridization of propagating surface plasmon.
    Cong J; Zhou Z; Yun B; Lv L; Yao H; Fu Y; Ren N
    Opt Lett; 2016 May; 41(9):1965-8. PubMed ID: 27128050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Designed Broadband Absorber Based on ENZ Mode Incorporating Plasmonic Metasurfaces.
    Dang PT; Le KQ; Lee JH; Nguyen TK
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31590301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure.
    Wang BX; Wang GZ; Sang T; Wang LL
    Sci Rep; 2017 Jan; 7():41373. PubMed ID: 28120897
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance.
    Zhang C; Huang C; Pu M; Song J; Zhao Z; Wu X; Luo X
    Sci Rep; 2017 Jul; 7(1):5652. PubMed ID: 28720892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extending Absorption Edge through the Hybrid Resonator-Based Absorber with Wideband and Near-Perfect Absorption in Visible Region.
    Lai YC; Chen CY; Hung YT; Chen CY
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32213820
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wide-Angle Polarization-Independent Ultra-Broadband Absorber from Visible to Infrared.
    Liu J; Chen W; Zheng JC; Chen YS; Yang CF
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical investigation of an ultra-broadband, wide-angle, and polarization-independent metasurface light absorber.
    Zhang K; Deng R; Song L; Zhang T
    Appl Opt; 2020 Oct; 59(28):8878-8885. PubMed ID: 33104573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultra-Broadband Perfect Absorber based on Titanium Nanoarrays for Harvesting Solar Energy.
    Song D; Zhang K; Qian M; Liu Y; Wu X; Yu K
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiband-switchability and high-absorptivity of a metamaterial perfect absorber based on a plasmonic resonant structure in the near-infrared region.
    Liang J; Chen Y; Zhou Z; Chen S
    RSC Adv; 2022 Oct; 12(48):30871-30878. PubMed ID: 36349026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultra-Broadband Mid-Infrared Metamaterial Absorber Based on Multi-Sized Resonators.
    Huang X; Zhou Z; Cao M; Li R; Sun C; Li X
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transparent absorber composed of two stacked ultrathin metal films perforated with small holes.
    Wu G; Xiao W; Wang Z; Zhang Y; Huang C
    Opt Express; 2022 Jun; 30(13):22922-22930. PubMed ID: 36224982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Angular- and Polarization-insensitive Ultrathin Double-layered Metamaterial Absorber for Ultra-wideband Application.
    Cong LL; Cao XY; Song T; Gao J; Lan JX
    Sci Rep; 2018 Jun; 8(1):9627. PubMed ID: 29941959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly efficient, perfect, large angular and ultrawideband solar energy absorber for UV to MIR range.
    Patel SK; Udayakumar AK; Mahendran G; Vasudevan B; Surve J; Parmar J
    Sci Rep; 2022 Oct; 12(1):18044. PubMed ID: 36302877
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.