These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36839143)

  • 41. Thermal Annealing Induced Surface Oxygen Vacancy Clusters in α-MnO
    Lu Y; Deng H; Pan T; Zhang C; He H
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36754841
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhancing the Low-Temperature CO Oxidation over CuO-Based α-MnO
    Cui Y; Song H; Shi Y; Ge P; Chen M; Xu L
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745420
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Discovering the key role of MnO
    Soltan WB; Sun J; Wang W; Song Z; Zhao X; Mao Y; Zhang Z
    Sci Total Environ; 2022 May; 819():152844. PubMed ID: 35038514
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Insight into the reactions of antimonite with manganese oxides: Synergistic effects of Mn(III) and oxygen vacancies.
    Wei D; Liu J; Luo Z; Xie X
    Water Res; 2023 Apr; 232():119681. PubMed ID: 36736246
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unraveling the Synergistic Reaction and the Deactivation Mechanism for the Catalytic Degradation of Double Components of Sulfur-Containing VOCs over ZSM-5-Based Materials.
    Tian R; Lu J; Xu Z; Zhang W; Liu J; Wang L; Xie Y; Zhao Y; Cao X; Luo Y
    Environ Sci Technol; 2022 Oct; ():. PubMed ID: 36196013
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Experimental and Theoretical Investigation of the Effect of Oxygen Vacancies on the Electronic Structure and Pseudocapacitance of MnO
    Yan L; Shen C; Niu L; Liu MC; Lin J; Chen T; Gong Y; Li C; Liu X; Xu S
    ChemSusChem; 2019 Aug; 12(15):3571-3581. PubMed ID: 31127866
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Three-Dimensional Ordered Mesoporous MnO2-Supported Ag Nanoparticles for Catalytic Removal of Formaldehyde.
    Bai B; Qiao Q; Arandiyan H; Li J; Hao J
    Environ Sci Technol; 2016 Mar; 50(5):2635-40. PubMed ID: 26629972
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Engineering of crystal phase over porous MnO
    Zheng X; Zhang G; Yao Z; Zheng Y; Shen L; Liu F; Cao Y; Liang S; Xiao Y; Jiang L
    J Hazard Mater; 2021 Jun; 411():125180. PubMed ID: 33858115
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Concurrent catalytic removal of typical volatile organic compound mixtures over Au-Pd/α-MnO
    Xia Y; Xia L; Liu Y; Yang T; Deng J; Dai H
    J Environ Sci (China); 2018 Feb; 64():276-288. PubMed ID: 29478649
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient monolithic MnO
    Qiu J; Wang W; Wang J; Zhao M; Chen Y
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):44324-44334. PubMed ID: 35129750
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tuning the K
    Zhu G; Zhu J; Li W; Yao W; Zong R; Zhu Y; Zhang Q
    Environ Sci Technol; 2018 Aug; 52(15):8684-8692. PubMed ID: 29968461
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Facile fabrication of flower-like MnO
    Gu W; Li C; Qiu J; Yao J
    J Hazard Mater; 2021 Apr; 408():124458. PubMed ID: 33168316
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preoxidation-assisted nitrogen enrichment strategy to decorate porous carbon spheres for catalytic adsorption/oxidation of methyl mercaptan.
    Zhang C; Wang Y; Zhang X; Wang R; Kou L; Li R; Fan C
    RSC Adv; 2020 Oct; 10(62):37644-37656. PubMed ID: 35515190
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel γ-like MnO
    Xu Z; Yang W; Si W; Chen J; Peng Y; Li J
    J Hazard Mater; 2021 Oct; 420():126641. PubMed ID: 34329114
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Facile Method for in Situ Preparation of the MnO2/LaMnO3 Catalyst for the Removal of Toluene.
    Si W; Wang Y; Zhao S; Hu F; Li J
    Environ Sci Technol; 2016 Apr; 50(8):4572-8. PubMed ID: 26886715
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activation of peroxymonosulfate by α-MnO
    Yang Y; Zhao Y; Zong Y; Wu R; Zhang M; Feng J; Wei T; Ren Y; Ma J
    Environ Res; 2022 Jul; 210():112919. PubMed ID: 35157919
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synergetic activation of peroxymonosulfate by MnO
    Lyu C; He D; Mou Z; Yang X
    Sci Total Environ; 2019 Nov; 693():133589. PubMed ID: 31635017
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of sulfur poisoning on physicochemical properties and performance of MnO
    Wang Z; Xie K; Jiang B; Zuo S; Wang Q
    J Hazard Mater; 2022 Aug; 435():128950. PubMed ID: 35468397
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In situ fabrication of highly active γ-MnO
    Liu L; Li J; Zhang H; Li L; Zhou P; Meng X; Guo M; Jia J; Sun T
    J Hazard Mater; 2019 Jan; 362():178-186. PubMed ID: 30236939
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly Efficient Performance and Conversion Pathway of Photocatalytic CH
    Hu L; He H; Xia D; Huang Y; Xu J; Li H; He C; Yang W; Shu D; Wong PK
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18693-18708. PubMed ID: 29732890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.