BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 36839634)

  • 1. Regulation of
    Arunachalam K; Pandurangan P; Shi C; Lagoa R
    Pharmaceutics; 2023 Jan; 15(2):. PubMed ID: 36839634
    [No Abstract]   [Full Text] [Related]  

  • 2. Small Molecules Produced by Commensal Staphylococcus epidermidis Disrupt Formation of Biofilms by Staphylococcus aureus.
    Glatthardt T; Campos JCM; Chamon RC; de Sá Coimbra TF; Rocha GA; de Melo MAF; Parente TE; Lobo LA; Antunes LCM; Dos Santos KRN; Ferreira RBR
    Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31862721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Toxin-Antitoxin MazEF Drives Staphylococcus aureus Biofilm Formation, Antibiotic Tolerance, and Chronic Infection.
    Ma D; Mandell JB; Donegan NP; Cheung AL; Ma W; Rothenberger S; Shanks RMQ; Richardson AR; Urish KL
    mBio; 2019 Nov; 10(6):. PubMed ID: 31772059
    [No Abstract]   [Full Text] [Related]  

  • 4. Genomics of Staphylococcus aureus and Staphylococcus epidermidis from Periprosthetic Joint Infections and Correlation to Clinical Outcome.
    Trobos M; Firdaus R; Svensson Malchau K; Tillander J; Arnellos D; Rolfson O; Thomsen P; Lasa I
    Microbiol Spectr; 2022 Aug; 10(4):e0218121. PubMed ID: 35762769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas aeruginosa Increases the Sensitivity of Biofilm-Grown Staphylococcus aureus to Membrane-Targeting Antiseptics and Antibiotics.
    Orazi G; Ruoff KL; O'Toole GA
    mBio; 2019 Jul; 10(4):. PubMed ID: 31363032
    [No Abstract]   [Full Text] [Related]  

  • 6. Zinc oxide nanoparticles reduce biofilm formation, synergize antibiotics action and attenuate Staphylococcus aureus virulence in host; an important message to clinicians.
    Abdelghafar A; Yousef N; Askoura M
    BMC Microbiol; 2022 Oct; 22(1):244. PubMed ID: 36221053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of metal oxide nanoparticles as novel antimicrobial agents against multi-drug and multi-virulent Staphylococcus aureus isolates from retail raw chicken meat and giblets.
    Ali SS; Moawad MS; Hussein MA; Azab M; Abdelkarim EA; Badr A; Sun J; Khalil M
    Int J Food Microbiol; 2021 Apr; 344():109116. PubMed ID: 33676332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Susceptibility patterns of Staphylococcus aureus biofilms in diabetic foot infections.
    Mottola C; Matias CS; Mendes JJ; Melo-Cristino J; Tavares L; Cavaco-Silva P; Oliveira M
    BMC Microbiol; 2016 Jun; 16(1):119. PubMed ID: 27339028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of Staphylococcus aureus Biofilm Formation and Virulence Factor Production by Petroselinic Acid and Other Unsaturated C18 Fatty Acids.
    Lee JH; Kim YG; Lee J
    Microbiol Spectr; 2022 Jun; 10(3):e0133022. PubMed ID: 35647620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Multidrug Resistant Staphylococcus aureus and their Association with Biofilm Production in a Tertiary Care Hospital, Tripura, Northeast India.
    Bhattacharya S; Bir R; Majumdar T
    J Clin Diagn Res; 2015 Sep; 9(9):DC01-4. PubMed ID: 26500902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial resistance profile of Staphylococcus aureus and its in-vitro potential inhibition efficiency.
    Alarjani KM; Skalicky M
    J Infect Public Health; 2021 Dec; 14(12):1796-1801. PubMed ID: 34756813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New update on molecular diversity of clinical Staphylococcus aureus isolates in Iran: antimicrobial resistance, adhesion and virulence factors, biofilm formation and SCCmec typing.
    Tabandeh M; Kaboosi H; Taghizadeh Armaki M; Pournajaf A; Peyravii Ghadikolaii F
    Mol Biol Rep; 2022 Apr; 49(4):3099-3111. PubMed ID: 35064407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promising treatment strategies to combat
    Seethalakshmi PS; Rajeev R; Kiran GS; Selvin J
    Biofouling; 2020 Nov; 36(10):1159-1181. PubMed ID: 33353409
    [No Abstract]   [Full Text] [Related]  

  • 14. Temperature-dependent control of Staphylococcus aureus biofilms and virulence by thermoresponsive oligo(N-vinylcaprolactam).
    Lee JH; Kim YG; Lee K; Kim SC; Lee J
    Biotechnol Bioeng; 2015 Apr; 112(4):716-24. PubMed ID: 25407932
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Silva-de-Jesus AC; Ferrari RG; Panzenhagen P; Conte-Junior CA
    Microbiology (Reading); 2022 Oct; 168(10):. PubMed ID: 36201337
    [No Abstract]   [Full Text] [Related]  

  • 16. Focused review on dual inhibition of quorum sensing and efflux pumps: A potential way to combat multi drug resistant Staphylococcus aureus infections.
    Kaur B; Gupta J; Sharma S; Sharma D; Sharma S
    Int J Biol Macromol; 2021 Nov; 190():33-43. PubMed ID: 34480904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diclofenac mitigates virulence of multidrug-resistant Staphylococcus aureus.
    Abbas HA; Atallah H; El-Sayed MA; El-Ganiny AM
    Arch Microbiol; 2020 Dec; 202(10):2751-2760. PubMed ID: 32737541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effectiveness of anti-biofilm and anti-virulence properties of dihydrocelastrol and dihydrocelastryl diacetate in fighting against methicillin-resistant Staphylococcus aureus.
    Woo SG; Lee SM; Lee SY; Lim KH; Ha EJ; Kim SH; Eom YB
    Arch Microbiol; 2017 Oct; 199(8):1151-1163. PubMed ID: 28487997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on nanosystems as an effective approach against infections of
    Zhou K; Li C; Chen D; Pan Y; Tao Y; Qu W; Liu Z; Wang X; Xie S
    Int J Nanomedicine; 2018; 13():7333-7347. PubMed ID: 30519018
    [No Abstract]   [Full Text] [Related]  

  • 20. Repurposing Approved Drugs as Fluoroquinolone Potentiators to Overcome Efflux Pump Resistance in Staphylococcus aureus.
    Mahey N; Tambat R; Chandal N; Verma DK; Thakur KG; Nandanwar H
    Microbiol Spectr; 2021 Dec; 9(3):e0095121. PubMed ID: 34908453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.