BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36840078)

  • 1. Growth, Flowering, and Fruit Production of Strawberry 'Albion' in Response to Photoperiod and Photosynthetic Photon Flux Density of Sole-Source Lighting.
    Park Y; Sethi R; Temnyk S
    Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and Bioactive Compound Content of
    Lee HR; Kim HM; Jeong HW; Oh MM; Hwang SJ
    Plants (Basel); 2020 Nov; 9(11):. PubMed ID: 33203177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Only Extreme Fluctuations in Light Levels Reduce Lettuce Growth Under Sole Source Lighting.
    Bhuiyan R; van Iersel MW
    Front Plant Sci; 2021; 12():619973. PubMed ID: 33584773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of Basil Growth and Morphology to Light Intensity and Spectrum in a Vertical Farm.
    Larsen DH; Woltering EJ; Nicole CCS; Marcelis LFM
    Front Plant Sci; 2020; 11():597906. PubMed ID: 33424894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosynthetic photon flux density affects fruit biomass radiation-use efficiency of dwarf tomatoes under LED light at the reproductive growth stage.
    Ke X; Yoshida H; Hikosaka S; Goto E
    Front Plant Sci; 2023; 14():1076423. PubMed ID: 36923121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blue Photons from Broad-Spectrum LEDs Control Growth, Morphology, and Coloration of Indoor Hydroponic Red-Leaf Lettuce.
    Meng Q; Runkle ES
    Plants (Basel); 2023 Mar; 12(5):. PubMed ID: 36903988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flowering and Runnering of Seasonal Strawberry under Different Photoperiods Are Affected by Intensity of Supplemental or Night-Interrupting Blue Light.
    Yang J; Song J; Jeong BR
    Plants (Basel); 2024 Jan; 13(3):. PubMed ID: 38337908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cannabis Yield, Potency, and Leaf Photosynthesis Respond Differently to Increasing Light Levels in an Indoor Environment.
    Rodriguez-Morrison V; Llewellyn D; Zheng Y
    Front Plant Sci; 2021; 12():646020. PubMed ID: 34046049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Close-canopy lighting, an effective energy-saving strategy for overhead sole-source LED lighting in indoor farming.
    Sheibani F; Bourget M; Morrow RC; Mitchell CA
    Front Plant Sci; 2023; 14():1215919. PubMed ID: 37575942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral effects of light-emitting diodes on plant growth, visual color quality, and photosynthetic photon efficacy: White versus blue plus red radiation.
    Park Y; Runkle ES
    PLoS One; 2018; 13(8):e0202386. PubMed ID: 30114282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic Photon Flux Density Effects on
    Kudirka G; Viršilė A; Laužikė K; Sutulienė R; Samuolienė G
    Plants (Basel); 2023 Oct; 12(20):. PubMed ID: 37896086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of optimal daily light integral (DLI) for indoor cultivation of iceberg lettuce in an indigenous vertical hydroponic system.
    Gavhane KP; Hasan M; Singh DK; Kumar SN; Sahoo RN; Alam W
    Sci Rep; 2023 Jul; 13(1):10923. PubMed ID: 37407651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light Intensity and Photoperiod Affect Growth and Nutritional Quality of Brassica Microgreens.
    Liu K; Gao M; Jiang H; Ou S; Li X; He R; Li Y; Liu H
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35164148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Physiological Response of Lettuce to Red and Blue Light Dynamics Over Different Photoperiods.
    Samuolienė G; Viršilė A; Miliauskienė J; Haimi PJ; Laužikė K; Brazaitytė A; Duchovskis P
    Front Plant Sci; 2020; 11():610174. PubMed ID: 33643330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the enhancement of photosynthetic rate in a komatsuna (
    Saito K; Goto E
    Front Plant Sci; 2023; 14():1111338. PubMed ID: 37035046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth and Accumulation of Secondary Metabolites in Perilla as Affected by Photosynthetic Photon Flux Density and Electrical Conductivity of the Nutrient Solution.
    Lu N; Bernardo EL; Tippayadarapanich C; Takagaki M; Kagawa N; Yamori W
    Front Plant Sci; 2017; 8():708. PubMed ID: 28523012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Longer Photoperiods with the Same Daily Light Integral Increase Daily Electron Transport through Photosystem II in Lettuce.
    Elkins C; van Iersel MW
    Plants (Basel); 2020 Sep; 9(9):. PubMed ID: 32927709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of varying light quality from single-peak blue and red light-emitting diodes during nursery period on flowering, photosynthesis, growth, and fruit yield of everbearing strawberry.
    Yoshida H; Mizuta D; Fukuda N; Hikosaka S; Goto E
    Plant Biotechnol (Tokyo); 2016; 33(4):267-276. PubMed ID: 31274989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is Twelve Hours Really the Optimum Photoperiod for Promoting Flowering in Indoor-Grown Cultivars of
    Ahrens A; Llewellyn D; Zheng Y
    Plants (Basel); 2023 Jul; 12(14):. PubMed ID: 37514220
    [No Abstract]   [Full Text] [Related]  

  • 20. Plant Factories Are Heating Up: Hunting for the Best Combination of Light Intensity, Air Temperature and Root-Zone Temperature in Lettuce Production.
    Carotti L; Graamans L; Puksic F; Butturini M; Meinen E; Heuvelink E; Stanghellini C
    Front Plant Sci; 2020; 11():592171. PubMed ID: 33584743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.