These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 36840171)
1. Long-Term Alleviation of the Functional Phenotype in Chlorophyll-Deficient Wheat and Impact on Productivity: A Semi-Field Phenotyping Experiment. Colpo A; Demaria S; Baldisserotto C; Pancaldi S; Brestič M; Živčak M; Ferroni L Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840171 [TBL] [Abstract][Full Text] [Related]
2. Fast chlorophyll a fluorescence induction (OJIP) phenotyping of chlorophyll-deficient wheat suggests that an enlarged acceptor pool size of Photosystem I helps compensate for a deregulated photosynthetic electron flow. Ferroni L; Živčak M; Kovar M; Colpo A; Pancaldi S; Allakhverdiev SI; Brestič M J Photochem Photobiol B; 2022 Sep; 234():112549. PubMed ID: 36049286 [TBL] [Abstract][Full Text] [Related]
3. Phenotyping of isogenic chlorophyll-less bread and durum wheat mutant lines in relation to photoprotection and photosynthetic capacity. Zivcak M; Brestic M; Botyanszka L; Chen YE; Allakhverdiev SI Photosynth Res; 2019 Mar; 139(1-3):239-251. PubMed ID: 30019176 [TBL] [Abstract][Full Text] [Related]
4. Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. Brestic M; Zivcak M; Kunderlikova K; Sytar O; Shao H; Kalaji HM; Allakhverdiev SI Photosynth Res; 2015 Aug; 125(1-2):151-66. PubMed ID: 25648638 [TBL] [Abstract][Full Text] [Related]
5. Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Zivcak M; Brestic M; Balatova Z; Drevenakova P; Olsovska K; Kalaji HM; Yang X; Allakhverdiev SI Photosynth Res; 2013 Nov; 117(1-3):529-46. PubMed ID: 23860828 [TBL] [Abstract][Full Text] [Related]
6. Growth Light Environment Changes the Sensitivity of Photosystem I Photoinhibition Depending on Common Wheat Cultivars. Takagi D; Ihara H; Takumi S; Miyake C Front Plant Sci; 2019; 10():686. PubMed ID: 31214216 [TBL] [Abstract][Full Text] [Related]
7. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Brestic M; Zivcak M; Kunderlikova K; Allakhverdiev SI Photosynth Res; 2016 Dec; 130(1-3):251-266. PubMed ID: 27023107 [TBL] [Abstract][Full Text] [Related]
8. [Flag leaf photosynthetic characteristics, change in chlorophyll fluorescence parameters, and their relationships with yield of winter wheat sowed in spring]. Xu L; Gao ZQ; An W; Li YL; Jiao XF; Wang CY Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):133-42. PubMed ID: 27228602 [TBL] [Abstract][Full Text] [Related]
9. [Effects of dark induced senescence on the function of photosystem II in flag leaves of winter wheat released in different years.]. Yang C; Zhang Q; Du SM; Shao YH; Fang BT; Li XD; Yue JQ; Zhang SY Ying Yong Sheng Tai Xue Bao; 2018 Aug; 29(8):2525-2531. PubMed ID: 30182591 [TBL] [Abstract][Full Text] [Related]
10. Mesophyll conductance, photoprotective process and optimal N partitioning are essential to the maintenance of photosynthesis at N deficient condition in a wheat yellow-green mutant (Triticum aestivum L.). Li H; Li J; Zhang X; Shi T; Chai X; Hou P; Wang Y J Plant Physiol; 2021 Aug; 263():153469. PubMed ID: 34252704 [TBL] [Abstract][Full Text] [Related]
11. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana. Tardy F; Havaux M J Photochem Photobiol B; 1996 Jun; 34(1):87-94. PubMed ID: 8765663 [TBL] [Abstract][Full Text] [Related]
12. [Effects of elevated CO Zong YZ; Yang Q; Chang CC; Gou JY; Zhang DS; Hao XY; Gao ZQ Ying Yong Sheng Tai Xue Bao; 2021 Dec; 32(12):4370-4380. PubMed ID: 34951278 [TBL] [Abstract][Full Text] [Related]
13. Wheat cultivars selected for high Fv /Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Sharma DK; Andersen SB; Ottosen CO; Rosenqvist E Physiol Plant; 2015 Feb; 153(2):284-98. PubMed ID: 24962705 [TBL] [Abstract][Full Text] [Related]
14. Photosynthetic pigment composition and photosystem II photochemistry of wheat ears. Lu Q; Lu C Plant Physiol Biochem; 2004 May; 42(5):395-402. PubMed ID: 15191742 [TBL] [Abstract][Full Text] [Related]
15. Aluminum resistance in wheat involves maintenance of leaf Ca(2+) and Mg(2+) content, decreased lipid peroxidation and Al accumulation, and low photosystem II excitation pressure. Moustaka J; Ouzounidou G; Bayçu G; Moustakas M Biometals; 2016 Aug; 29(4):611-23. PubMed ID: 27188757 [TBL] [Abstract][Full Text] [Related]
16. High-throughput field phenotyping reveals genetic variation in photosynthetic traits in durum wheat under drought. Zendonadi Dos Santos N; Piepho HP; Condorelli GE; Licieri Groli E; Newcomb M; Ward R; Tuberosa R; Maccaferri M; Fiorani F; Rascher U; Muller O Plant Cell Environ; 2021 Sep; 44(9):2858-2878. PubMed ID: 34189744 [TBL] [Abstract][Full Text] [Related]
17. Elevated air temperature damage to photosynthetic apparatus alleviated by enhanced cyclic electron flow around photosystem I in tobacco leaves. Yanhui C; Hongrui W; Beining Z; Shixing G; Zihan W; Yue W; Huihui Z; Guangyu S Ecotoxicol Environ Saf; 2020 Nov; 204():111136. PubMed ID: 32798755 [TBL] [Abstract][Full Text] [Related]
18. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions. Niinemets U ; Kull O Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337 [TBL] [Abstract][Full Text] [Related]
19. Effects of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves. Wang G; Zeng F; Song P; Sun B; Wang Q; Wang J J Plant Physiol; 2022 May; 272():153669. PubMed ID: 35344760 [TBL] [Abstract][Full Text] [Related]