These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 36840276)
41. Detection of QTLs for panicle-related traits using an Li G; Cheng Y; Yin M; Yang J; Ying J; Zhu C PeerJ; 2021; 9():e12504. PubMed ID: 34909275 [TBL] [Abstract][Full Text] [Related]
42. High-resolution quantitative trait locus mapping for rice grain quality traits using genotyping by sequencing. Jin SK; Xu LN; Yang QQ; Zhang MQ; Wang SL; Wang RA; Tao T; Hong LM; Guo QQ; Jia SW; Song T; Leng YJ; Cai XL; Gao JP Front Plant Sci; 2022; 13():1050882. PubMed ID: 36714703 [TBL] [Abstract][Full Text] [Related]
43. Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Nandi S; Subudhi PK; Senadhira D; Manigbas NL; Sen-Mandi S; Huang N Mol Gen Genet; 1997 Jun; 255(1):1-8. PubMed ID: 9230893 [TBL] [Abstract][Full Text] [Related]
44. RAD-seq-Based High-Density Linkage Map Construction and QTL Mapping of Biomass-Related Traits in Sorghum using the Japanese Landrace Takakibi NOG. Kajiya-Kanegae H; Takanashi H; Fujimoto M; Ishimori M; Ohnishi N; Wacera W F; Omollo EA; Kobayashi M; Yano K; Nakano M; Kozuka T; Kusaba M; Iwata H; Tsutsumi N; Sakamoto W Plant Cell Physiol; 2020 Jul; 61(7):1262-1272. PubMed ID: 32353144 [TBL] [Abstract][Full Text] [Related]
45. Genome Sequence and QTL Analyses Using Backcross Recombinant Inbred Lines (BILs) and BILF Yu Y; Zhu M; Cui Y; Liu Y; Li Z; Jiang N; Xu Z; Xu Q; Sui G Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 31991733 [No Abstract] [Full Text] [Related]
46. Genome-Wide Identification of QTLs for Grain Protein Content Based on Genotyping-by-Resequencing and Verification of Wu YB; Li G; Zhu YJ; Cheng YC; Yang JY; Chen HZ; Song XJ; Ying JZ Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936451 [TBL] [Abstract][Full Text] [Related]
47. Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array. Rubinstein M; Katzenellenbogen M; Eshed R; Rozen A; Katzir N; Colle M; Yang L; Grumet R; Weng Y; Sherman A; Ophir R PLoS One; 2015; 10(4):e0124101. PubMed ID: 25874931 [TBL] [Abstract][Full Text] [Related]
48. Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Spindel J; Wright M; Chen C; Cobb J; Gage J; Harrington S; Lorieux M; Ahmadi N; McCouch S Theor Appl Genet; 2013 Nov; 126(11):2699-716. PubMed ID: 23918062 [TBL] [Abstract][Full Text] [Related]
49. A high-density SNP-based linkage map using genotyping-by-sequencing and its utilization for improved genome assembly of chickpea (Cicer arietinum L.). Gaur R; Verma S; Pradhan S; Ambreen H; Bhatia S Funct Integr Genomics; 2020 Nov; 20(6):763-773. PubMed ID: 32856221 [TBL] [Abstract][Full Text] [Related]
50. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. Wei Q; Wang Y; Qin X; Zhang Y; Zhang Z; Wang J; Li J; Lou Q; Chen J BMC Genomics; 2014 Dec; 15(1):1158. PubMed ID: 25534138 [TBL] [Abstract][Full Text] [Related]
51. Identification of a Novel QTL for Panicle Length From Wild Rice ( Zhu Z; Li X; Wei Y; Guo S; Sha A Front Plant Sci; 2018; 9():1492. PubMed ID: 30459776 [TBL] [Abstract][Full Text] [Related]
52. High-density linkage map construction and QTL analysis for earliness-related traits in Gossypium hirsutum L. Jia X; Pang C; Wei H; Wang H; Ma Q; Yang J; Cheng S; Su J; Fan S; Song M; Wusiman N; Yu S BMC Genomics; 2016 Nov; 17(1):909. PubMed ID: 27835938 [TBL] [Abstract][Full Text] [Related]
53. Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. Deokar AA; Ramsay L; Sharpe AG; Diapari M; Sindhu A; Bett K; Warkentin TD; Tar'an B BMC Genomics; 2014 Aug; 15(1):708. PubMed ID: 25150411 [TBL] [Abstract][Full Text] [Related]
54. High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Dilbirligi M; Erayman M; Campbell BT; Randhawa HS; Baenziger PS; Dweikat I; Gill KS Genomics; 2006 Jul; 88(1):74-87. PubMed ID: 16624516 [TBL] [Abstract][Full Text] [Related]
55. SNP Discovery by GBS in Olive and the Construction of a High-Density Genetic Linkage Map. İpek A; Yılmaz K; Sıkıcı P; Tangu NA; Öz AT; Bayraktar M; İpek M; Gülen H Biochem Genet; 2016 Jun; 54(3):313-325. PubMed ID: 26902470 [TBL] [Abstract][Full Text] [Related]
56. QTL scanning for rice yield using a whole genome SNP array. Tan C; Han Z; Yu H; Zhan W; Xie W; Chen X; Zhao H; Zhou F; Xing Y J Genet Genomics; 2013 Dec; 40(12):629-38. PubMed ID: 24377869 [TBL] [Abstract][Full Text] [Related]
57. Koshihikari: a premium short-grain rice cultivar - its expansion and breeding in Japan. Kobayashi A; Hori K; Yamamoto T; Yano M Rice (N Y); 2018 Apr; 11(1):15. PubMed ID: 29629486 [TBL] [Abstract][Full Text] [Related]
58. Identification of QTLs for rice grain size using a novel set of chromosomal segment substitution lines derived from Yamadanishiki in the genetic background of Koshihikari. Okada S; Onogi A; Iijima K; Hori K; Iwata H; Yokoyama W; Suehiro M; Yamasaki M Breed Sci; 2018 Mar; 68(2):210-218. PubMed ID: 29875604 [TBL] [Abstract][Full Text] [Related]
59. Construction of high-quality recombination maps with low-coverage genomic sequencing for joint linkage analysis in maize. Li C; Li Y; Bradbury PJ; Wu X; Shi Y; Song Y; Zhang D; Rodgers-Melnick E; Buckler ES; Zhang Z; Li Y; Wang T BMC Biol; 2015 Sep; 13():78. PubMed ID: 26390990 [TBL] [Abstract][Full Text] [Related]
60. Comparison of the Genetic Diversity of the Captive and Wild Populations of the Tsushima Leopard Cat Using a GRAS-Di Analysis. Ito H; Nakajima N; Onuma M; Inoue-Murayama M Animals (Basel); 2022 Jun; 12(11):. PubMed ID: 35681928 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]