These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36840893)

  • 1. GPCRLigNet: rapid screening for GPCR active ligands using machine learning.
    Remington JM; McKay KT; Beckage NB; Ferrell JB; Schneebeli ST; Li J
    J Comput Aided Mol Des; 2023 Mar; 37(3):147-156. PubMed ID: 36840893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and validation of a novel protein-ligand fingerprint to mine chemogenomic space: application to G protein-coupled receptors and their ligands.
    Weill N; Rognan D
    J Chem Inf Model; 2009 Apr; 49(4):1049-62. PubMed ID: 19301874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular interaction fingerprint approaches for GPCR drug discovery.
    Vass M; Kooistra AJ; Ritschel T; Leurs R; de Esch IJ; de Graaf C
    Curr Opin Pharmacol; 2016 Oct; 30():59-68. PubMed ID: 27479316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for Virtual Screening of GPCR Targets: Approaches and Challenges.
    Cross JB
    Methods Mol Biol; 2018; 1705():233-264. PubMed ID: 29188566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G Protein-Coupled Receptor-Ligand Pose and Functional Class Prediction.
    Szwabowski GL; Griffing M; Mugabe EJ; O'Malley D; Baker LN; Baker DL; Parrill AL
    Int J Mol Sci; 2024 Jun; 25(13):. PubMed ID: 38999982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Inference of Chemical Discriminants of Biological Activity.
    Raschka S; Scott AM; Huertas M; Li W; Kuhn LA
    Methods Mol Biol; 2018; 1762():307-338. PubMed ID: 29594779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Docking Finds GPCR Ligands in Dark Chemical Matter.
    Ballante F; Rudling A; Zeifman A; Luttens A; Vo DD; Irwin JJ; Kihlberg J; Brea J; Loza MI; Carlsson J
    J Med Chem; 2020 Jan; 63(2):613-620. PubMed ID: 31846328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DENVIS: Scalable and High-Throughput Virtual Screening Using Graph Neural Networks with Atomic and Surface Protein Pocket Features.
    Krasoulis A; Antonopoulos N; Pitsikalis V; Theodorakis S
    J Chem Inf Model; 2022 Oct; 62(19):4642-4659. PubMed ID: 36154119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated discovery of GPCR bioactive ligands.
    Raschka S
    Curr Opin Struct Biol; 2019 Apr; 55():17-24. PubMed ID: 30909105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based virtual screening of the nociceptin receptor: hybrid docking and shape-based approaches for improved hit identification.
    Daga PR; Polgar WE; Zaveri NT
    J Chem Inf Model; 2014 Oct; 54(10):2732-43. PubMed ID: 25148595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating Molecular Docking using Machine Learning Methods.
    Bande AY; Baday S
    Mol Inform; 2024 Jun; 43(6):e202300167. PubMed ID: 38850231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Machine Learning Approach for the Discovery of Ligand-Specific Functional Mechanisms of GPCRs.
    Plante A; Shore DM; Morra G; Khelashvili G; Weinstein H
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31159491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target based virtual screening by docking into automatically generated GPCR models.
    Tautermann CS
    Methods Mol Biol; 2012; 914():255-70. PubMed ID: 22976033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Assisted Approach for Finding Novel High Activity Agonists of Human Ectopic Olfactory Receptors.
    Jabeen A; de March CA; Matsunami H; Ranganathan S
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From heptahelical bundle to hits from the Haystack: structure-based virtual screening for GPCR ligands.
    Kooistra AJ; Roumen L; Leurs R; de Esch IJ; de Graaf C
    Methods Enzymol; 2013; 522():279-336. PubMed ID: 23374191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emulating Docking Results Using a Deep Neural Network: A New Perspective for Virtual Screening.
    Jastrzębski S; Szymczak M; Pocha A; Mordalski S; Tabor J; Bojarski AJ; Podlewska S
    J Chem Inf Model; 2020 Sep; 60(9):4246-4262. PubMed ID: 32865414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of machine learning in GPCR bioactive ligand discovery.
    Jabeen A; Ranganathan S
    Curr Opin Struct Biol; 2019 Apr; 55():66-76. PubMed ID: 31005679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving virtual screening of G protein-coupled receptors via ligand-directed modeling.
    Coudrat T; Simms J; Christopoulos A; Wootten D; Sexton PM
    PLoS Comput Biol; 2017 Nov; 13(11):e1005819. PubMed ID: 29131821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional descriptors for aminergic GPCRs: dependence on docking conformation and crystal structure.
    Jastrzębski S; Sieradzki I; Leśniak D; Tabor J; Bojarski AJ; Podlewska S
    Mol Divers; 2019 Aug; 23(3):603-613. PubMed ID: 30484023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.