These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 36841031)
61. Immune Checkpoint Inhibitors (ICIs) in Non-Small Cell Lung Cancer (NSCLC). Yoneda K; Imanishi N; Ichiki Y; Tanaka F J UOEH; 2018; 40(2):173-189. PubMed ID: 29925736 [TBL] [Abstract][Full Text] [Related]
62. Oncolytic peptide LTX-315 induces anti-pancreatic cancer immunity by targeting the ATP11B-PD-L1 axis. Tang T; Huang X; Zhang G; Lu M; Hong Z; Wang M; Huang J; Zhi X; Liang T J Immunother Cancer; 2022 Mar; 10(3):. PubMed ID: 35288467 [TBL] [Abstract][Full Text] [Related]
63. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Hamanishi J; Mandai M; Matsumura N; Abiko K; Baba T; Konishi I Int J Clin Oncol; 2016 Jun; 21(3):462-73. PubMed ID: 26899259 [TBL] [Abstract][Full Text] [Related]
64. Natural killer T cell immunotherapy combined with IL-15-expressing oncolytic virotherapy and PD-1 blockade mediates pancreatic tumor regression. Nelson A; Gebremeskel S; Lichty BD; Johnston B J Immunother Cancer; 2022 Mar; 10(3):. PubMed ID: 35246474 [TBL] [Abstract][Full Text] [Related]
66. The recent advances of PD-1 and PD-L1 checkpoint signaling inhibition for breast cancer immunotherapy. Setordzi P; Chang X; Liu Z; Wu Y; Zuo D Eur J Pharmacol; 2021 Mar; 895():173867. PubMed ID: 33460617 [TBL] [Abstract][Full Text] [Related]
67. Biomarkers for PD-1/PD-L1 Blockade Therapy in Non-Small-cell Lung Cancer: Is PD-L1 Expression a Good Marker for Patient Selection? Chae YK; Pan A; Davis AA; Raparia K; Mohindra NA; Matsangou M; Giles FJ Clin Lung Cancer; 2016 Sep; 17(5):350-361. PubMed ID: 27137346 [TBL] [Abstract][Full Text] [Related]
68. Defining Effective Combinations of Immune Checkpoint Blockade and Oncolytic Virotherapy. Rojas JJ; Sampath P; Hou W; Thorne SH Clin Cancer Res; 2015 Dec; 21(24):5543-51. PubMed ID: 26187615 [TBL] [Abstract][Full Text] [Related]
69. An Avidity-Based PD-L1 Antagonist Using Nanoparticle-Antibody Conjugates for Enhanced Immunotherapy. Bu J; Nair A; Iida M; Jeong WJ; Poellmann MJ; Mudd K; Kubiatowicz LJ; Liu EW; Wheeler DL; Hong S Nano Lett; 2020 Jul; 20(7):4901-4909. PubMed ID: 32510959 [TBL] [Abstract][Full Text] [Related]
70. Novel Small Molecule Inhibitors of Programmed Cell Death (PD)-1, and its Ligand, PD-L1 in Cancer Immunotherapy: A Review Update of Patent Literature. Kopalli SR; Kang TB; Lee KH; Koppula S Recent Pat Anticancer Drug Discov; 2019; 14(2):100-112. PubMed ID: 30370857 [TBL] [Abstract][Full Text] [Related]
71. Combination cancer immunotherapy targeting TNFR2 and PD-1/PD-L1 signaling reduces immunosuppressive effects in the microenvironment of pancreatic tumors. Zhang X; Lao M; Xu J; Duan Y; Yang H; Li M; Ying H; He L; Sun K; Guo C; Chen W; Jiang H; Zhang X; Bai X; Liang T J Immunother Cancer; 2022 Mar; 10(3):. PubMed ID: 35260434 [TBL] [Abstract][Full Text] [Related]
72. Current Advances in PD-1/PD-L1 Blockade in Recurrent Epithelial Ovarian Cancer. Zhang Y; Cui Q; Xu M; Liu D; Yao S; Chen M Front Immunol; 2022; 13():901772. PubMed ID: 35833132 [TBL] [Abstract][Full Text] [Related]
73. CD137 and PD-L1 targeting with immunovirotherapy induces a potent and durable antitumor immune response in glioblastoma models. Puigdelloses M; Garcia-Moure M; Labiano S; Laspidea V; Gonzalez-Huarriz M; Zalacain M; Marrodan L; Martinez-Velez N; De la Nava D; Ausejo I; Hervás-Stubbs S; Herrador G; Chen Z; Hambardzumyan D; Patino Garcia A; Jiang H; Gomez-Manzano C; Fueyo J; Gállego Pérez-Larraya J; Alonso M J Immunother Cancer; 2021 Jul; 9(7):. PubMed ID: 34281988 [TBL] [Abstract][Full Text] [Related]
74. Multi-Omics Perspective Reveals the Different Patterns of Tumor Immune Microenvironment Based on Programmed Death Ligand 1 (PD-L1) Expression and Predictor of Responses to Immune Checkpoint Blockade across Pan-Cancer. Huang K; Hu M; Chen J; Wei J; Qin J; Lin S; Du H Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068143 [TBL] [Abstract][Full Text] [Related]
75. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Kim JM; Chen DS Ann Oncol; 2016 Aug; 27(8):1492-504. PubMed ID: 27207108 [TBL] [Abstract][Full Text] [Related]
76. Osteoclast Immunosuppressive Effects in Multiple Myeloma: Role of Programmed Cell Death Ligand 1. Tai YT; Cho SF; Anderson KC Front Immunol; 2018; 9():1822. PubMed ID: 30147691 [TBL] [Abstract][Full Text] [Related]
77. Study and analysis of antitumor resistance mechanism of PD1/PD-L1 immune checkpoint blocker. Wang Z; Wu X Cancer Med; 2020 Nov; 9(21):8086-8121. PubMed ID: 32875727 [TBL] [Abstract][Full Text] [Related]
78. PD-1/PD-L1 Blockade Enhances T-cell Activity and Antitumor Efficacy of Imatinib in Gastrointestinal Stromal Tumors. Seifert AM; Zeng S; Zhang JQ; Kim TS; Cohen NA; Beckman MJ; Medina BD; Maltbaek JH; Loo JK; Crawley MH; Rossi F; Besmer P; Antonescu CR; DeMatteo RP Clin Cancer Res; 2017 Jan; 23(2):454-465. PubMed ID: 27470968 [TBL] [Abstract][Full Text] [Related]
79. Talimogene Laherparepvec: An Oncolytic Virus Therapy for Melanoma. Corrigan PA; Beaulieu C; Patel RB; Lowe DK Ann Pharmacother; 2017 Aug; 51(8):675-681. PubMed ID: 28351167 [TBL] [Abstract][Full Text] [Related]