These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36841072)

  • 21. Photovoltaic Electrochemically Driven Degradation of Calcon Dye with Simultaneous Green Hydrogen Production.
    Câmara Cardozo J; da Silva DR; Martínez-Huitle CA; Quiroz MA; Dos Santos EV
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visible light driven reform of wasted plastics to generate green hydrogen over mesoporous ZnIn
    Zheng Y; Fan P; Guo R; Liu X; Zhou X; Xue C; Ji H
    RSC Adv; 2023 Apr; 13(19):12663-12669. PubMed ID: 37101527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced biodegradation of waste poly(ethylene terephthalate) using a reinforced plastic degrading enzyme complex.
    Hwang DH; Lee ME; Cho BH; Oh JW; You SK; Ko YJ; Hyeon JE; Han SO
    Sci Total Environ; 2022 Oct; 842():156890. PubMed ID: 35753492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Upcycling of semicrystalline polymers by compatibilization: mechanism and location of compatibilizers.
    Tang X; Liu C; Keum J; Chen J; Dial BE; Wang Y; Tsai WY; Bras W; Saito T; Bowland CC; Chen XC
    RSC Adv; 2022 Apr; 12(18):10886-10894. PubMed ID: 35425049
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upcycling Plastic Waste into High Value-Added Carbonaceous Materials.
    Choi J; Yang I; Kim SS; Cho SY; Lee S
    Macromol Rapid Commun; 2022 Jan; 43(1):e2100467. PubMed ID: 34643991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Processing Poly (ethylene terephthalate) Waste into Functional Carbon Materials by Mechanochemical Extrusion.
    Xu J; Duan X; Zhang P; Niu Q; Dai S
    ChemSusChem; 2022 Nov; 15(22):e202201576. PubMed ID: 36107132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient upcycling of iron scrap and waste polyethylene terephthalate plastic into Fe
    Priyadarshini M; Ahmad A; Ghangrekar MM
    Environ Pollut; 2023 Apr; 322():121242. PubMed ID: 36758930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial synthesis of vanillin from waste poly(ethylene terephthalate).
    Sadler JC; Wallace S
    Green Chem; 2021 Jul; 23(13):4665-4672. PubMed ID: 34276250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Upcycling Plastic Wastes into Value-Added Products by Heterogeneous Catalysis.
    Tan T; Wang W; Zhang K; Zhan Z; Deng W; Zhang Q; Wang Y
    ChemSusChem; 2022 Jul; 15(14):e202200522. PubMed ID: 35438240
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conversion of Waste Plastics into Value-Added Carbonaceous Fuels under Mild Conditions.
    Jiao X; Zheng K; Hu Z; Zhu S; Sun Y; Xie Y
    Adv Mater; 2021 Dec; 33(50):e2005192. PubMed ID: 33834571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fuel cell and electrolyzer using plastic waste directly as fuel.
    Hori T; Kobayashi K; Teranishi S; Nagao M; Hibino T
    Waste Manag; 2020 Feb; 102():30-39. PubMed ID: 31655328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering Microbes to Bio-Upcycle Polyethylene Terephthalate.
    Dissanayake L; Jayakody LN
    Front Bioeng Biotechnol; 2021; 9():656465. PubMed ID: 34124018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cascade degradation and upcycling of polystyrene waste to high-value chemicals.
    Xu Z; Pan F; Sun M; Xu J; Munyaneza NE; Croft ZL; Cai GG; Liu G
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2203346119. PubMed ID: 35969757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solar-to-Chemical Fuel Conversion via Metal Halide Perovskite Solar-Driven Electrocatalysis.
    Huang H; Weng B; Zhang H; Lai F; Long J; Hofkens J; Douthwaite RE; Steele JA; Roeffaers MBJ
    J Phys Chem Lett; 2022 Jan; 13(1):25-41. PubMed ID: 34957833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioconversion of Plastic Waste Based on Mass Full Carbon Backbone Polymeric Materials to Value-Added Polyhydroxyalkanoates (PHAs).
    Johnston B; Adamus G; Ekere AI; Kowalczuk M; Tchuenbou-Magaia F; Radecka I
    Bioengineering (Basel); 2022 Sep; 9(9):. PubMed ID: 36134978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate).
    Qian X; Jiang M; Dong W
    Trends Biotechnol; 2023 Oct; 41(10):1223-1226. PubMed ID: 37105776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-temperature upcycling of PET waste into high-purity H
    Su H; Li T; Wang S; Zhu L; Hu Y
    J Hazard Mater; 2023 Feb; 443(Pt A):130120. PubMed ID: 36265384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Upcycling of waste polyethylene terephthalate plastic bottles into porous carbon for CF
    Yuan X; Cho MK; Lee JG; Choi SW; Lee KB
    Environ Pollut; 2020 Oct; 265(Pt A):114868. PubMed ID: 32534237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Advances in Biological Recycling of Polyethylene Terephthalate (PET) Plastic Wastes.
    Soong YV; Sobkowicz MJ; Xie D
    Bioengineering (Basel); 2022 Feb; 9(3):. PubMed ID: 35324787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanistic aspects of poly(ethylene terephthalate) recycling-toward enabling high quality sustainability decisions in waste management.
    Ghasemi MH; Neekzad N; Ajdari FB; Kowsari E; Ramakrishna S
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):43074-43101. PubMed ID: 34146328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.