These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36841124)

  • 1. Applying a homogeneous pressure distribution to the upper vertebral endplate: Validation of a new loading system, pilot application to human vertebral bodies, and finite element predictions of DIC measured displacements and strains.
    Baleani M; Fraterrigo G; Erani P; Rota G; Berni M; Taddei F; Schileo E
    J Mech Behav Biomed Mater; 2023 Apr; 140():105706. PubMed ID: 36841124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of a subject-specific finite element model of lumbar spine segment using digital image correlation.
    Garavelli C; Curreli C; Palanca M; Aldieri A; Cristofolini L; Viceconti M
    PLoS One; 2022; 17(9):e0272529. PubMed ID: 36084092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of endplate conditions and bone mineral density on the compressive strength of the graft-endplate interface in anterior cervical spine fusion.
    Lim TH; Kwon H; Jeon CH; Kim JG; Sokolowski M; Natarajan R; An HS; Andersson GB
    Spine (Phila Pa 1976); 2001 Apr; 26(8):951-6. PubMed ID: 11317120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Modelling Methodology Which Predicts the Structural Behaviour of Vertebral Bodies under Axial Impact Loading: A Finite Element and DIC Study.
    Agostinho Hernandez B; Gill HS; Gheduzzi S
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32987869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of finite element analyses of CT scans in predictions of vertebral failure patterns under axial compression and anterior flexion.
    Jackman TM; DelMonaco AM; Morgan EF
    J Biomech; 2016 Jan; 49(2):267-75. PubMed ID: 26792288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital tomosynthesis based digital volume correlation: A clinically viable noninvasive method for direct measurement of intravertebral displacements using images of the human spine under physiological load.
    Oravec D; Flynn MJ; Zauel R; Rao S; Yeni YN
    Med Phys; 2019 Oct; 46(10):4553-4562. PubMed ID: 31381174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiffness of the endplate boundary layer and endplate surface topography are associated with brittleness of human whole vertebral bodies.
    Nekkanty S; Yerramshetty J; Kim DG; Zauel R; Johnson E; Cody DD; Yeni YN
    Bone; 2010 Oct; 47(4):783-9. PubMed ID: 20633709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Damage Identification on Vertebral Bodies During Compressive Loading Using Digital Image Correlation.
    Gustafson HM; Melnyk AD; Siegmund GP; Cripton PA
    Spine (Phila Pa 1976); 2017 Nov; 42(22):E1289-E1296. PubMed ID: 28306642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro.
    Dall'Ara E; Schmidt R; Pahr D; Varga P; Chevalier Y; Patsch J; Kainberger F; Zysset P
    J Biomech; 2010 Aug; 43(12):2374-80. PubMed ID: 20462582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Three dimensional finite element analysis of optimal distribution model of fillers in vertebroplasty].
    Wang DG; Li Y; Yin HL; Li J; Qu J; Jiang MB; Tian JW
    Zhongguo Gu Shang; 2021 Jan; 34(1):26-33. PubMed ID: 33666016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro Finite Element models of the vertebral body: Validation of local displacement predictions.
    Costa MC; Tozzi G; Cristofolini L; Danesi V; Viceconti M; Dall'Ara E
    PLoS One; 2017; 12(7):e0180151. PubMed ID: 28700618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of specimen-specific vertebral body finite element models with experimental digital image correlation measurements.
    Gustafson HM; Cripton PA; Ferguson SJ; Helgason B
    J Mech Behav Biomed Mater; 2017 Jan; 65():801-807. PubMed ID: 27776322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain changes on the cortical shell of vertebral bodies due to spine ageing: a parametric study using a finite element model evaluated by strain measurements.
    Lu Y; Rosenau E; Paetzold H; Klein A; Püschel K; Morlock MM; Huber G
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1265-74. PubMed ID: 23990044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in Trabecular Microarchitecture and Simplified Boundary Conditions Limit the Accuracy of Quantitative Computed Tomography-Based Finite Element Models of Vertebral Failure.
    Hussein AI; Louzeiro DT; Unnikrishnan GU; Morgan EF
    J Biomech Eng; 2018 Feb; 140(2):0210041-02100411. PubMed ID: 29196764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of vertebral compressive strength to endplate loading distribution.
    Buckley JM; Leang DC; Keaveny TM
    J Biomech Eng; 2006 Oct; 128(5):641-6. PubMed ID: 16995749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of screw tunnels on the biomechanical stability of vertebral body after pedicle screws removal: a finite element analysis.
    Liu JM; Zhang Y; Zhou Y; Chen XY; Huang SH; Hua ZK; Liu ZL
    Int Orthop; 2017 Jun; 41(6):1183-1187. PubMed ID: 28353052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical effects of bone cement volume on the endplates of augmented vertebral body: a three-dimensional finite element analysis.
    Yan L; Chang Z; Xu Z; Liu T; He B; Hao D
    Chin Med J (Engl); 2014; 127(1):79-84. PubMed ID: 24384428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypersensitivity of trunk biomechanical model predictions to errors in image-based kinematics when using fully displacement-control techniques.
    Eskandari AH; Arjmand N; Shirazi-Adl A; Farahmand F
    J Biomech; 2019 Feb; 84():161-171. PubMed ID: 30638978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical characterization of vertebral body replacement in situ: Effects of different fixation strategies.
    Dong E; Shi L; Kang J; Li D; Liu B; Guo Z; Wang L; Li X
    Comput Methods Programs Biomed; 2020 Dec; 197():105741. PubMed ID: 32961386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.