These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. HDPE/UHMWPE hybrid nanocomposites with surface functionalized graphene oxide towards improved strength and cytocompatibility. Bhusari SA; Sharma V; Bose S; Basu B J R Soc Interface; 2019 Jan; 16(150):20180273. PubMed ID: 30958172 [TBL] [Abstract][Full Text] [Related]
5. Friction, wear, and tensile properties of vacuum hot pressing crosslinked UHMWPE/nano-HAP composites. Xiong L; Xiong D; Yang Y; Jin J J Biomed Mater Res B Appl Biomater; 2011 Jul; 98(1):127-38. PubMed ID: 21598380 [TBL] [Abstract][Full Text] [Related]
7. Long-term wear failure analysis of uhmwpe acetabular cup in total hip replacement. Shahemi N; Liza S; Abbas AA; Merican AM J Mech Behav Biomed Mater; 2018 Nov; 87():1-9. PubMed ID: 30031358 [TBL] [Abstract][Full Text] [Related]
8. UHMWPE-MWCNT-nHA based hybrid trilayer nanobiocomposite: Processing approach, physical properties, stem/bone cell functionality, and blood compatibility. Naskar S; Panda AK; Jana A; Kanagaraj S; Basu B J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2320-2343. PubMed ID: 31994833 [TBL] [Abstract][Full Text] [Related]
9. In-vitro cell adhesion and proliferation of adipose derived stem cell on hydroxyapatite composite surfaces. Pulyala P; Singh A; Dias-Netipanyj MF; Cogo SC; Santos LS; Soares P; Gopal V; Suganthan V; Manivasagam G; Popat KC Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1305-1316. PubMed ID: 28415420 [TBL] [Abstract][Full Text] [Related]
10. Improved nanomechanical and in-vitro biocompatibility of graphene oxide-carbon nanotube hydroxyapatite hybrid composites by synergistic effect. Jyoti J; Kiran A; Sandhu M; Kumar A; Singh BP; Kumar N J Mech Behav Biomed Mater; 2021 May; 117():104376. PubMed ID: 33618240 [TBL] [Abstract][Full Text] [Related]
11. Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review. Macuvele DLP; Nones J; Matsinhe JV; Lima MM; Soares C; Fiori MA; Riella HG Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():1248-1262. PubMed ID: 28482493 [TBL] [Abstract][Full Text] [Related]
12. Assessment of bulk and surface properties of medical grade UHMWPE based nanocomposites using Nanoindentation and microtensile testing. Rama Sreekanth PS; Kanagaraj S J Mech Behav Biomed Mater; 2013 Feb; 18():140-51. PubMed ID: 23266415 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the 3YSZ/CNT/HAP coating on the Ti6Al4V alloy by electrophoretic deposition. Naseri H; Ghatee M; Yazdani A; Mohammadi M; Manafi S J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1395-1406. PubMed ID: 33484113 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of carbon nanotubes and graphene as reinforcements for UHMWPE-based composites in arthroplastic applications: A review. Puértolas JA; Kurtz SM J Mech Behav Biomed Mater; 2014 Nov; 39():129-45. PubMed ID: 25128868 [TBL] [Abstract][Full Text] [Related]
15. Domination of volumetric toughening by silver nanoparticles over interfacial strengthening of carbon nanotubes in bactericidal hydroxyapatite biocomposite. Herkendell K; Shukla VR; Patel AK; Balani K Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():455-67. PubMed ID: 24268282 [TBL] [Abstract][Full Text] [Related]
16. Ultra-high-molecular-weight polyethylene fiber reinforced dental composites: Effect of fiber surface treatment on mechanical properties of the composites. Bahramian N; Atai M; Naimi-Jamal MR Dent Mater; 2015 Sep; 31(9):1022-9. PubMed ID: 26113427 [TBL] [Abstract][Full Text] [Related]
17. Carbon nanotube-collagen@hydroxyapatite composites with improved mechanical and biological properties fabricated by a multi in situ synthesis process. Li H; Sun X; Li Y; Wang H; Li B; Liang C Biomed Microdevices; 2020 Sep; 22(4):64. PubMed ID: 32897447 [TBL] [Abstract][Full Text] [Related]
18. Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition. Hahn BD; Lee JM; Park DS; Choi JJ; Ryu J; Yoon WH; Lee BK; Shin DS; Kim HE Acta Biomater; 2009 Oct; 5(8):3205-14. PubMed ID: 19446047 [TBL] [Abstract][Full Text] [Related]
19. A cross-linking model for estimating Young's modulus of artificial bone tissue grown on carbon nanotube scaffold. Saffar KP; Arshi AR; JamilPour N; Najafi AR; Rouhi G; Sudak L J Biomed Mater Res A; 2010 Aug; 94(2):594-602. PubMed ID: 20198697 [TBL] [Abstract][Full Text] [Related]
20. Mapping local microstructure and mechanical performance around carbon nanotube grafted silica fibres: methodologies for hierarchical composites. Qian H; Kalinka G; Chan KL; Kazarian SG; Greenhalgh ES; Bismarck A; Shaffer MS Nanoscale; 2011 Nov; 3(11):4759-67. PubMed ID: 21979874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]