These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36841244)

  • 1. Dry Lithography Patterning of Monolayer Flexible Field Effect Transistors by 2D Mica Stamping.
    Zou D; He Z; Chen M; Yan L; Guo Y; Gao G; Li C; Piao Y; Cheng X; Chan PKL
    Adv Mater; 2023 May; 35(20):e2211600. PubMed ID: 36841244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field-Effect Transistors Based on 2D Organic Semiconductors Developed by a Hybrid Deposition Method.
    Zhou Z; Wu Q; Wang S; Huang YT; Guo H; Feng SP; Chan PKL
    Adv Sci (Weinh); 2019 Oct; 6(19):1900775. PubMed ID: 31592413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic Field-Effect Transistor Fabricated on Internal Shrinking Substrate.
    Dai DSHS; Peng B; Chen M; He Z; Leung TKW; Chik GKK; Fan S; Lu Y; Chan PKL
    Small; 2022 Feb; 18(8):e2106066. PubMed ID: 34881811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic semiconductors based on [1]benzothieno[3,2-b][1]benzothiophene substructure.
    Takimiya K; Osaka I; Mori T; Nakano M
    Acc Chem Res; 2014 May; 47(5):1493-502. PubMed ID: 24785263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultralow contact resistance in organic transistors via orbital hybridization.
    Zeng J; He D; Qiao J; Li Y; Sun L; Li W; Xie J; Gao S; Pan L; Wang P; Xu Y; Li Y; Qiu H; Shi Y; Xu JB; Ji W; Wang X
    Nat Commun; 2023 Jan; 14(1):324. PubMed ID: 36658167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hysteresis-Free, High-Performance Polymer-Dielectric Organic Field-Effect Transistors Enabled by Supercritical Fluid.
    Shi Y; Zheng Y; Wang J; Zhao R; Wang T; Zhao C; Chang KC; Meng H; Wang X
    Research (Wash D C); 2020; 2020():6587102. PubMed ID: 33015635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning Electrode Work Function and Surface Energy for Solution Shearing High-Performance Organic Field-Effect Transistors.
    Huang C; Li C; Geng B; Ding X; Zhang J; Tang W; Duan S; Ren X; Hu W
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):30228-30238. PubMed ID: 38810990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diphenyl derivatives of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene: organic semiconductors for thermally stable thin-film transistors.
    Kang MJ; Miyazaki E; Osaka I; Takimiya K; Nakao A
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2331-6. PubMed ID: 23410846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Area MXene Electrode Array for Flexible Electronics.
    Lyu B; Kim M; Jing H; Kang J; Qian C; Lee S; Cho JH
    ACS Nano; 2019 Oct; 13(10):11392-11400. PubMed ID: 31553884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterning an Erosion-Free Polymeric Semiconductor Channel for Reliable All-Photolithography Organic Electronics.
    Chen R; Yan Y; Wang X; Chang C; Zhao Y; Liu Y; Wei D
    J Phys Chem Lett; 2022 Aug; 13(33):7673-7680. PubMed ID: 35960015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enabling Multifunctional Organic Transistors with Fine-Tuned Charge Transport.
    Di CA; Shen H; Zhang F; Zhu D
    Acc Chem Res; 2019 Apr; 52(4):1113-1124. PubMed ID: 30908012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Critical Thickness of Organic Semiconductor Layer for Enhanced Piezoresistive Sensitivity in Field-Effect Transistor Sensors.
    Thuau D; Begley K; Dilmurat R; Ablat A; Wantz G; Ayela C; Abbas M
    Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32235524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallized Monolayer Semiconductor for Ohmic Contact Resistance, High Intrinsic Gain, and High Current Density.
    Peng B; Cao K; Lau AHY; Chen M; Lu Y; Chan PKL
    Adv Mater; 2020 Aug; 32(34):e2002281. PubMed ID: 32666565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface engineering: an effective approach toward high-performance organic field-effect transistors.
    Di CA; Liu Y; Yu G; Zhu D
    Acc Chem Res; 2009 Oct; 42(10):1573-83. PubMed ID: 19645474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Damage-free Metal Electrode Transfer to Monolayer Organic Single Crystalline Thin Films.
    Makita T; Yamamura A; Tsurumi J; Kumagai S; Kurosawa T; Okamoto T; Sasaki M; Watanabe S; Takeya J
    Sci Rep; 2020 Mar; 10(1):4702. PubMed ID: 32170189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible Bottom-Gated Organic Field-Effect Transistors Utilizing Stamped Polymer Layers from the Surface of Water.
    Sung Y; Shin EY; Noh YY; Lee JY
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25092-25099. PubMed ID: 32362121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailored Polymer Gate Dielectric Engineering to Optimize Flexible Organic Field-Effect Transistors and Complementary Integrated Circuits.
    Park H; Yoo S; Ha J; Kim J; Mun HJ; Shin TJ; Won JC; Kim YH
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30921-30929. PubMed ID: 34121383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Asymmetric Charge Injection/Extraction to Optimize Organic Transistor Performances.
    Rockson TK; Baek S; Jang H; Choi G; Oh S; Kim J; Cho H; Kim SH; Lee HS
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10108-10117. PubMed ID: 30784260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Peeling Method as a Post-Remedy Strategy for Producing an Ultrasmooth Self-Assembled Monolayer for High-Performance Organic Transistors.
    Chen X; Xu Z; Wu K; Zhang S; Li H; Meng Y; Wang Z; Li L; Ma X
    Langmuir; 2016 Sep; 32(37):9492-500. PubMed ID: 27557089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.