BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36841852)

  • 1. Cross-platform normalization enables machine learning model training on microarray and RNA-seq data simultaneously.
    Foltz SM; Greene CS; Taroni JN
    Commun Biol; 2023 Feb; 6(1):222. PubMed ID: 36841852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-platform normalization of microarray and RNA-seq data for machine learning applications.
    Thompson JA; Tan J; Greene CS
    PeerJ; 2016; 4():e1621. PubMed ID: 26844019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature specific quantile normalization enables cross-platform classification of molecular subtypes using gene expression data.
    Franks JM; Cai G; Whitfield ML
    Bioinformatics; 2018 Jun; 34(11):1868-1874. PubMed ID: 29360996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological classification with RNA-seq data: Can alternatively spliced transcript expression enhance machine learning classifiers?
    Johnson NT; Dhroso A; Hughes KJ; Korkin D
    RNA; 2018 Sep; 24(9):1119-1132. PubMed ID: 29941426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature-specific quantile normalization and feature-specific mean-variance normalization deliver robust bi-directional classification and feature selection performance between microarray and RNAseq data.
    Skubleny D; Ghosh S; Spratlin J; Schiller DE; Rayat GR
    BMC Bioinformatics; 2024 Mar; 25(1):136. PubMed ID: 38549046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets.
    Xu X; Zhang Y; Williams J; Antoniou E; McCombie WR; Wu S; Zhu W; Davidson NO; Denoya P; Li E
    BMC Bioinformatics; 2013; 14 Suppl 9(Suppl 9):S1. PubMed ID: 23902433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of transcriptional subtypes in lung adenocarcinoma and squamous cell carcinoma through integrative analysis of microarray and RNA sequencing data.
    Fauteux F; Surendra A; McComb S; Pan Y; Hill JJ
    Sci Rep; 2021 Apr; 11(1):8709. PubMed ID: 33888829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seq-ing improved gene expression estimates from microarrays using machine learning.
    Korir PK; Geeleher P; Seoighe C
    BMC Bioinformatics; 2015 Sep; 16():286. PubMed ID: 26338512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Microarray and RNA-seq Expression Profiling Data.
    Hung JH; Weng Z
    Cold Spring Harb Protoc; 2017 Mar; 2017(3):. PubMed ID: 27574194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of RNA-Seq data preprocessing pipelines for transcriptomic predictions across independent studies.
    Van R; Alvarez D; Mize T; Gannavarapu S; Chintham Reddy L; Nasoz F; Han MV
    BMC Bioinformatics; 2024 May; 25(1):181. PubMed ID: 38720247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How does normalization impact RNA-seq disease diagnosis?
    Han H; Men K
    J Biomed Inform; 2018 Sep; 85():80-92. PubMed ID: 30041017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic comparison of RNA-Seq normalization methods using measurement error models.
    Sun Z; Zhu Y
    Bioinformatics; 2012 Oct; 28(20):2584-91. PubMed ID: 22914217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NORMSEQ: a tool for evaluation, selection and visualization of RNA-Seq normalization methods.
    Scheepbouwer C; Hackenberg M; van Eijndhoven MAJ; Gerber A; Pegtel M; Gómez-Martín C
    Nucleic Acids Res; 2023 Jul; 51(W1):W372-W378. PubMed ID: 37216599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MLSeq: Machine learning interface for RNA-sequencing data.
    Goksuluk D; Zararsiz G; Korkmaz S; Eldem V; Zararsiz GE; Ozcetin E; Ozturk A; Karaagaoglu AE
    Comput Methods Programs Biomed; 2019 Jul; 175():223-231. PubMed ID: 31104710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data.
    Li X; Brock GN; Rouchka EC; Cooper NGF; Wu D; O'Toole TE; Gill RS; Eteleeb AM; O'Brien L; Rai SN
    PLoS One; 2017; 12(5):e0176185. PubMed ID: 28459823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust normalization and transformation techniques for constructing gene coexpression networks from RNA-seq data.
    Johnson KA; Krishnan A
    Genome Biol; 2022 Jan; 23(1):1. PubMed ID: 34980209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-seq assistant: machine learning based methods to identify more transcriptional regulated genes.
    Wang L; Xi Y; Sung S; Qiao H
    BMC Genomics; 2018 Jul; 19(1):546. PubMed ID: 30029596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AnyExpress: integrated toolkit for analysis of cross-platform gene expression data using a fast interval matching algorithm.
    Kim J; Patel K; Jung H; Kuo WP; Ohno-Machado L
    BMC Bioinformatics; 2011 Mar; 12():75. PubMed ID: 21410990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving reliability and absolute quantification of human brain microarray data by filtering and scaling probes using RNA-Seq.
    Miller JA; Menon V; Goldy J; Kaykas A; Lee CK; Smith KA; Shen EH; Phillips JW; Lein ES; Hawrylycz MJ
    BMC Genomics; 2014 Feb; 15(1):154. PubMed ID: 24564186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.