These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 36841920)
1. AI-assisted identification of intrapapillary capillary loops in magnification endoscopy for diagnosing early-stage esophageal squamous cell carcinoma: a preliminary study. Wang J; Long Q; Liang Y; Song J; Feng Y; Li P; Sun W; Zhao L Med Biol Eng Comput; 2023 Jul; 61(7):1631-1648. PubMed ID: 36841920 [TBL] [Abstract][Full Text] [Related]
2. ClusterNet: a clustering distributed prior embedded detection network for early-stage esophageal squamous cell carcinoma diagnosis. Wang P; Cai S; Tan W; Yan B; Zhong Y Med Phys; 2023 Feb; 50(2):854-866. PubMed ID: 36222486 [TBL] [Abstract][Full Text] [Related]
3. Artificial intelligence for diagnosing microvessels of precancerous lesions and superficial esophageal squamous cell carcinomas: a multicenter study. Yuan XL; Liu W; Liu Y; Zeng XH; Mou Y; Wu CC; Ye LS; Zhang YH; He L; Feng J; Zhang WH; Wang J; Chen X; Hu YX; Zhang KH; Hu B Surg Endosc; 2022 Nov; 36(11):8651-8662. PubMed ID: 35705757 [TBL] [Abstract][Full Text] [Related]
4. Artificial intelligence for the real-time classification of intrapapillary capillary loop patterns in the endoscopic diagnosis of early oesophageal squamous cell carcinoma: A proof-of-concept study. Everson M; Herrera L; Li W; Luengo IM; Ahmad O; Banks M; Magee C; Alzoubaidi D; Hsu HM; Graham D; Vercauteren T; Lovat L; Ourselin S; Kashin S; Wang HP; Wang WL; Haidry RJ United European Gastroenterol J; 2019 Mar; 7(2):297-306. PubMed ID: 31080614 [TBL] [Abstract][Full Text] [Related]
5. [Establishment and clinical validation of an artificial intelligence YOLOv51 model for the detection of precancerous lesions and superficial esophageal cancer in endoscopic procedure]. Wang SX; Ke Y; Liu YM; Liu SY; Song SB; He S; Zhang YM; Dou LZ; Liu Y; Liu XD; Wu HR; Su FX; Zhang FY; Zhang W; Wang GQ Zhonghua Zhong Liu Za Zhi; 2022 May; 44(5):395-401. PubMed ID: 35615795 [No Abstract] [Full Text] [Related]
6. Endoscopic detection and differentiation of esophageal lesions using a deep neural network. Ohmori M; Ishihara R; Aoyama K; Nakagawa K; Iwagami H; Matsuura N; Shichijo S; Yamamoto K; Nagaike K; Nakahara M; Inoue T; Aoi K; Okada H; Tada T Gastrointest Endosc; 2020 Feb; 91(2):301-309.e1. PubMed ID: 31585124 [TBL] [Abstract][Full Text] [Related]
7. Real-time assessment of video images for esophageal squamous cell carcinoma invasion depth using artificial intelligence. Shimamoto Y; Ishihara R; Kato Y; Shoji A; Inoue T; Matsueda K; Miyake M; Waki K; Kono M; Fukuda H; Matsuura N; Nagaike K; Aoi K; Yamamoto K; Inoue T; Nakahara M; Nishihara A; Tada T J Gastroenterol; 2020 Nov; 55(11):1037-1045. PubMed ID: 32778959 [TBL] [Abstract][Full Text] [Related]
8. Simplified criteria for diagnosing superficial esophageal squamous neoplasms using Narrow Band Imaging magnifying endoscopy. Dobashi A; Goda K; Yoshimura N; Ohya TR; Kato M; Sumiyama K; Matsushima M; Hirooka S; Ikegami M; Tajiri H World J Gastroenterol; 2016 Nov; 22(41):9196-9204. PubMed ID: 27895406 [TBL] [Abstract][Full Text] [Related]
9. Comparative study on artificial intelligence systems for detecting early esophageal squamous cell carcinoma between narrow-band and white-light imaging. Li B; Cai SL; Tan WM; Li JC; Yalikong A; Feng XS; Yu HH; Lu PX; Feng Z; Yao LQ; Zhou PH; Yan B; Zhong YS World J Gastroenterol; 2021 Jan; 27(3):281-293. PubMed ID: 33519142 [TBL] [Abstract][Full Text] [Related]
10. Diagnostic performance of magnifying blue laser imaging versus magnifying narrow-band imaging for identifying the depth of invasion of superficial esophageal squamous cell carcinoma. Ueda T; Dohi O; Naito Y; Yoshida T; Azuma Y; Ishida T; Matsumura S; Kitae H; Takayama S; Mizuno N; Nakano T; Iwai N; Hirose R; Inoue K; Yoshida N; Kamada K; Uchiyama K; Ishikawa T; Takagi T; Konishi H; Nishimura A; Kishimoto M; Itoh Y Dis Esophagus; 2021 Mar; 34(3):. PubMed ID: 32691042 [TBL] [Abstract][Full Text] [Related]
11. Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging. Ueyama H; Kato Y; Akazawa Y; Yatagai N; Komori H; Takeda T; Matsumoto K; Ueda K; Matsumoto K; Hojo M; Yao T; Nagahara A; Tada T J Gastroenterol Hepatol; 2021 Feb; 36(2):482-489. PubMed ID: 32681536 [TBL] [Abstract][Full Text] [Related]
12. A clinically interpretable convolutional neural network for the real-time prediction of early squamous cell cancer of the esophagus: comparing diagnostic performance with a panel of expert European and Asian endoscopists. Everson MA; Garcia-Peraza-Herrera L; Wang HP; Lee CT; Chung CS; Hsieh PH; Chen CC; Tseng CH; Hsu MH; Vercauteren T; Ourselin S; Kashin S; Bisschops R; Pech O; Lovat L; Wang WL; Haidry RJ Gastrointest Endosc; 2021 Aug; 94(2):273-281. PubMed ID: 33549586 [TBL] [Abstract][Full Text] [Related]
13. Artificial intelligence for detecting and delineating the extent of superficial esophageal squamous cell carcinoma and precancerous lesions under narrow-band imaging (with video). Yuan XL; Zeng XH; Liu W; Mou Y; Zhang WH; Zhou ZD; Chen X; Hu YX; Hu B Gastrointest Endosc; 2023 Apr; 97(4):664-672.e4. PubMed ID: 36509114 [TBL] [Abstract][Full Text] [Related]
14. Computer-assisted diagnosis of early esophageal squamous cell carcinoma using narrow-band imaging magnifying endoscopy. Zhao YY; Xue DX; Wang YL; Zhang R; Sun B; Cai YP; Feng H; Cai Y; Xu JM Endoscopy; 2019 Apr; 51(4):333-341. PubMed ID: 30469155 [TBL] [Abstract][Full Text] [Related]
15. Utility of an artificial intelligence system for classification of esophageal lesions when simulating its clinical use. Tajiri A; Ishihara R; Kato Y; Inoue T; Matsueda K; Miyake M; Waki K; Shimamoto Y; Fukuda H; Matsuura N; Egawa S; Yamaguchi S; Ogiyama H; Ogiso K; Nishida T; Aoi K; Tada T Sci Rep; 2022 Apr; 12(1):6677. PubMed ID: 35461350 [TBL] [Abstract][Full Text] [Related]
16. Magnification endoscopy in esophageal squamous cell carcinoma: a review of the intrapapillary capillary loop classification. Inoue H; Kaga M; Ikeda H; Sato C; Sato H; Minami H; Santi EG; Hayee B; Eleftheriadis N Ann Gastroenterol; 2015; 28(1):41-48. PubMed ID: 25608626 [TBL] [Abstract][Full Text] [Related]
17. Artificial intelligence for detecting superficial esophageal squamous cell carcinoma under multiple endoscopic imaging modalities: A multicenter study. Yuan XL; Guo LJ; Liu W; Zeng XH; Mou Y; Bai S; Pan ZG; Zhang T; Pu WF; Wen C; Wang J; Zhou ZD; Feng J; Hu B J Gastroenterol Hepatol; 2022 Jan; 37(1):169-178. PubMed ID: 34532890 [TBL] [Abstract][Full Text] [Related]
18. Assessment of the Diagnostic Performance of Endoscopic Ultrasonography After Conventional Endoscopy for the Evaluation of Esophageal Squamous Cell Carcinoma Invasion Depth. Ishihara R; Mizusawa J; Kushima R; Matsuura N; Yano T; Kataoka T; Fukuda H; Hanaoka N; Yoshio T; Abe S; Yamamoto Y; Nagata S; Ono H; Tamaoki M; Yoshida N; Takizawa K; Muto M JAMA Netw Open; 2021 Sep; 4(9):e2125317. PubMed ID: 34524432 [TBL] [Abstract][Full Text] [Related]
19. Artificial Intelligence for Detecting and Delineating Margins of Early ESCC Under WLI Endoscopy. Liu W; Yuan X; Guo L; Pan F; Wu C; Sun Z; Tian F; Yuan C; Zhang W; Bai S; Feng J; Hu Y; Hu B Clin Transl Gastroenterol; 2022 Jan; 13(1):e00433. PubMed ID: 35130184 [TBL] [Abstract][Full Text] [Related]
20. Application of artificial intelligence using convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma. Tokai Y; Yoshio T; Aoyama K; Horie Y; Yoshimizu S; Horiuchi Y; Ishiyama A; Tsuchida T; Hirasawa T; Sakakibara Y; Yamada T; Yamaguchi S; Fujisaki J; Tada T Esophagus; 2020 Jul; 17(3):250-256. PubMed ID: 31980977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]