These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36841949)

  • 1. CT-based radiomics for the identification of colorectal cancer liver metastases sensitive to first-line irinotecan-based chemotherapy.
    Qi W; Yang J; Zheng L; Lu Y; Liu R; Ju Y; Niu T; Wang D
    Med Phys; 2023 May; 50(5):2705-2714. PubMed ID: 36841949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiomics Texture Analysis for the Identification of Colorectal Liver Metastases Sensitive to First-Line Oxaliplatin-Based Chemotherapy.
    Nakanishi R; Oki E; Hasuda H; Sano E; Miyashita Y; Sakai A; Koga N; Kuriyama N; Nonaka K; Fujimoto Y; Jogo T; Hokonohara K; Hu Q; Hisamatsu Y; Ando K; Kimura Y; Yoshizumi T; Mori M
    Ann Surg Oncol; 2021 Jun; 28(6):2975-2985. PubMed ID: 33454878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based radiomics predicts response to chemotherapy in colorectal liver metastases.
    Wei J; Cheng J; Gu D; Chai F; Hong N; Wang Y; Tian J
    Med Phys; 2021 Jan; 48(1):513-522. PubMed ID: 33119899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Association of CT-Based Delta Radiomics Biomarker With Progression-Free Survival in Patients With Colorectal Liver Metastases Undergo Chemotherapy.
    Ye S; Han Y; Pan X; Niu K; Liao Y; Meng X
    Front Oncol; 2022; 12():843991. PubMed ID: 35692757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases.
    Taghavi M; Trebeschi S; Simões R; Meek DB; Beckers RCJ; Lambregts DMJ; Verhoef C; Houwers JB; van der Heide UA; Beets-Tan RGH; Maas M
    Abdom Radiol (NY); 2021 Jan; 46(1):249-256. PubMed ID: 32583138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CT-Based Radiomics Analysis Before Thermal Ablation to Predict Local Tumor Progression for Colorectal Liver Metastases.
    Taghavi M; Staal F; Gomez Munoz F; Imani F; Meek DB; Simões R; Klompenhouwer LG; van der Heide UA; Beets-Tan RGH; Maas M
    Cardiovasc Intervent Radiol; 2021 Jun; 44(6):913-920. PubMed ID: 33506278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic radiomics for predicting the efficacy of antiangiogenic therapy in colorectal liver metastases.
    Qu H; Zhai H; Zhang S; Chen W; Zhong H; Cui X
    Front Oncol; 2023; 13():992096. PubMed ID: 36814812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting local tumour progression after ablation for colorectal liver metastases: CT-based radiomics of the ablation zone.
    Staal FCR; Taghavi M; van der Reijd DJ; Gomez FM; Imani F; Klompenhouwer EG; Meek D; Roberti S; de Boer M; Lambregts DMJ; Beets-Tan RGH; Maas M
    Eur J Radiol; 2021 Aug; 141():109773. PubMed ID: 34022475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiomics predicts response of individual HER2-amplified colorectal cancer liver metastases in patients treated with HER2-targeted therapy.
    Giannini V; Rosati S; Defeudis A; Balestra G; Vassallo L; Cappello G; Mazzetti S; De Mattia C; Rizzetto F; Torresin A; Sartore-Bianchi A; Siena S; Vanzulli A; Leone F; Zagonel V; Marsoni S; Regge D
    Int J Cancer; 2020 Dec; 147(11):3215-3223. PubMed ID: 32875550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early evaluation using a radiomic signature of unresectable hepatic metastases to predict outcome in patients with colorectal cancer treated with FOLFIRI and bevacizumab.
    Dohan A; Gallix B; Guiu B; Le Malicot K; Reinhold C; Soyer P; Bennouna J; Ghiringhelli F; Barbier E; Boige V; Taieb J; Bouché O; François E; Phelip JM; Borel C; Faroux R; Seitz JF; Jacquot S; Ben Abdelghani M; Khemissa-Akouz F; Genet D; Jouve JL; Rinaldi Y; Desseigne F; Texereau P; Suc E; Lepage C; Aparicio T; Hoeffel C;
    Gut; 2020 Mar; 69(3):531-539. PubMed ID: 31101691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early evaluation of liver metastasis using spectral CT to predict outcome in patients with colorectal cancer treated with FOLFOXIRI and bevacizumab.
    Li S; Yuan L; Yue M; Xu Y; Liu S; Wang F; Liu X; Wang F; Deng J; Sun Q; Liu X; Xue C; Lu T; Zhang W; Zhou J
    Cancer Imaging; 2023 Mar; 23(1):30. PubMed ID: 36964617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CT radiomics models are unable to predict new liver metastasis after successful thermal ablation of colorectal liver metastases.
    Taghavi M; Staal FC; Simões R; Hong EK; Lambregts DM; van der Heide UA; Beets-Tan RG; Maas M
    Acta Radiol; 2023 Jan; 64(1):5-12. PubMed ID: 34918955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrast MR-Based Radiomics and Machine Learning Analysis to Assess Clinical Outcomes following Liver Resection in Colorectal Liver Metastases: A Preliminary Study.
    Granata V; Fusco R; De Muzio F; Cutolo C; Setola SV; Dell' Aversana F; Ottaiano A; Avallone A; Nasti G; Grassi F; Pilone V; Miele V; Brunese L; Izzo F; Petrillo A
    Cancers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Clinical-Radiomics Model for Predicting Axillary Pathologic Complete Response in Breast Cancer With Axillary Lymph Node Metastases.
    Gan L; Ma M; Liu Y; Liu Q; Xin L; Cheng Y; Xu L; Qin N; Jiang Y; Zhang X; Wang X; Ye J
    Front Oncol; 2021; 11():786346. PubMed ID: 34993145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomics approach with deep learning for predicting T4 obstructive colorectal cancer using CT image.
    Pan L; He T; Huang Z; Chen S; Zhang J; Zheng S; Chen X
    Abdom Radiol (NY); 2023 Apr; 48(4):1246-1259. PubMed ID: 36859730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Texture features of colorectal liver metastases on pretreatment contrast-enhanced CT may predict response and prognosis in patients treated with bevacizumab-containing chemotherapy: a pilot study including comparison with standard chemotherapy.
    Ravanelli M; Agazzi GM; Tononcelli E; Roca E; Cabassa P; Baiocchi G; Berruti A; Maroldi R; Farina D
    Radiol Med; 2019 Sep; 124(9):877-886. PubMed ID: 31172448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A predictive model for early therapeutic efficacy of colorectal liver metastases using multimodal MRI data.
    Su X; Zhang H; Wang Y
    J Xray Sci Technol; 2023; 31(2):357-372. PubMed ID: 36591694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance imaging-radiomics evaluation of response to chemotherapy for synchronous liver metastasis of colorectal cancer.
    Ma YQ; Wen Y; Liang H; Zhong JG; Pang PP
    World J Gastroenterol; 2021 Oct; 27(38):6465-6475. PubMed ID: 34720535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the Response to FOLFOX-Based Chemotherapy Regimen from Untreated Liver Metastases on Baseline CT: a Deep Neural Network Approach.
    Maaref A; Romero FP; Montagnon E; Cerny M; Nguyen B; Vandenbroucke F; Soucy G; Turcotte S; Tang A; Kadoury S
    J Digit Imaging; 2020 Aug; 33(4):937-945. PubMed ID: 32193665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiomics-based intracranial thrombus features on preoperative noncontrast CT predicts successful recanalization of mechanical thrombectomy in acute ischemic stroke.
    Xiong X; Wang J; Ke J; Hong R; Jiang S; Ye J; Hu C
    Quant Imaging Med Surg; 2023 Feb; 13(2):682-694. PubMed ID: 36819277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.