These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36841949)

  • 21. Exploring tumor heterogeneity in colorectal liver metastases by imaging: Unsupervised machine learning of preoperative CT radiomics features for prognostic stratification.
    Wang Q; Nilsson H; Xu K; Wei X; Chen D; Zhao D; Hu X; Wang A; Bai G
    Eur J Radiol; 2024 Jun; 175():111459. PubMed ID: 38636408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic radiomics for predicting the efficacy of antiangiogenic therapy in colorectal liver metastases.
    Qu H; Zhai H; Zhang S; Chen W; Zhong H; Cui X
    Front Oncol; 2023; 13():992096. PubMed ID: 36814812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tumor classification of gastrointestinal liver metastases using CT-based radiomics and deep learning.
    Tharmaseelan H; Vellala AK; Hertel A; Tollens F; Rotkopf LT; Rink J; Woźnicki P; Ayx I; Bartling S; Nörenberg D; Schoenberg SO; Froelich MF
    Cancer Imaging; 2023 Oct; 23(1):95. PubMed ID: 37798797
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting local tumour progression after ablation for colorectal liver metastases: CT-based radiomics of the ablation zone.
    Staal FCR; Taghavi M; van der Reijd DJ; Gomez FM; Imani F; Klompenhouwer EG; Meek D; Roberti S; de Boer M; Lambregts DMJ; Beets-Tan RGH; Maas M
    Eur J Radiol; 2021 Aug; 141():109773. PubMed ID: 34022475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An innovative radiomics approach to predict response to chemotherapy of liver metastases based on CT images.
    Giannini V; Defeudis A; Rosati S; Cappello G; Mazzetti S; Panic J; Regge D; Balestra G
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1339-1342. PubMed ID: 33018236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Radiomics textural features by MR imaging to assess clinical outcomes following liver resection in colorectal liver metastases.
    Granata V; Fusco R; De Muzio F; Cutolo C; Setola SV; Grassi R; Grassi F; Ottaiano A; Nasti G; Tatangelo F; Pilone V; Miele V; Brunese MC; Izzo F; Petrillo A
    Radiol Med; 2022 May; 127(5):461-470. PubMed ID: 35347583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep radiomics-based fusion model for prediction of bevacizumab treatment response and outcome in patients with colorectal cancer liver metastases: a multicentre cohort study.
    Zhou S; Sun D; Mao W; Liu Y; Cen W; Ye L; Liang F; Xu J; Shi H; Ji Y; Wang L; Chang W
    EClinicalMedicine; 2023 Nov; 65():102271. PubMed ID: 37869523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of Local Tumor Progression After Microwave Ablation in Colorectal Carcinoma Liver Metastases Patients by MRI Radiomics and Clinical Characteristics-Based Combined Model: Preliminary Results.
    Shahveranova A; Balli HT; Aikimbaev K; Piskin FC; Sozutok S; Yucel SP
    Cardiovasc Intervent Radiol; 2023 Jun; 46(6):713-725. PubMed ID: 37156944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radiomics predicts response of individual HER2-amplified colorectal cancer liver metastases in patients treated with HER2-targeted therapy.
    Giannini V; Rosati S; Defeudis A; Balestra G; Vassallo L; Cappello G; Mazzetti S; De Mattia C; Rizzetto F; Torresin A; Sartore-Bianchi A; Siena S; Vanzulli A; Leone F; Zagonel V; Marsoni S; Regge D
    Int J Cancer; 2020 Dec; 147(11):3215-3223. PubMed ID: 32875550
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of radiomics approaches to predict resistance to 1st line chemotherapy in liver metastatic colorectal cancer.
    Defeudis A; Cefaloni L; Giannetto G; Cappello G; Rizzetto F; Panic J; Barra D; Nicoletti G; Mazzetti S; Vanzulli A; Regge D; Giannini V
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3305-3308. PubMed ID: 34891947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of Histopathologic Growth Patterns of Colorectal Liver Metastases with a Noninvasive Imaging Method.
    Cheng J; Wei J; Tong T; Sheng W; Zhang Y; Han Y; Gu D; Hong N; Ye Y; Tian J; Wang Y
    Ann Surg Oncol; 2019 Dec; 26(13):4587-4598. PubMed ID: 31605342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Delta-radiomics model for preoperative evaluation of Neoadjuvant chemotherapy response in high-grade osteosarcoma.
    Lin P; Yang PF; Chen S; Shao YY; Xu L; Wu Y; Teng W; Zhou XZ; Li BH; Luo C; Xu LM; Huang M; Niu TY; Ye ZM
    Cancer Imaging; 2020 Jan; 20(1):7. PubMed ID: 31937372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Early evaluation using a radiomic signature of unresectable hepatic metastases to predict outcome in patients with colorectal cancer treated with FOLFIRI and bevacizumab.
    Dohan A; Gallix B; Guiu B; Le Malicot K; Reinhold C; Soyer P; Bennouna J; Ghiringhelli F; Barbier E; Boige V; Taieb J; Bouché O; François E; Phelip JM; Borel C; Faroux R; Seitz JF; Jacquot S; Ben Abdelghani M; Khemissa-Akouz F; Genet D; Jouve JL; Rinaldi Y; Desseigne F; Texereau P; Suc E; Lepage C; Aparicio T; Hoeffel C;
    Gut; 2020 Mar; 69(3):531-539. PubMed ID: 31101691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of Primary Colorectal Cancer CT Radiomics to Predict Metachronous Liver Metastasis.
    Li Y; Gong J; Shen X; Li M; Zhang H; Feng F; Tong T
    Front Oncol; 2022; 12():861892. PubMed ID: 35296011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and validation of a radiomics-based nomogram for the preoperative prediction of microsatellite instability in colorectal cancer.
    Ying M; Pan J; Lu G; Zhou S; Fu J; Wang Q; Wang L; Hu B; Wei Y; Shen J
    BMC Cancer; 2022 May; 22(1):524. PubMed ID: 35534797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A clinical-radiomics model incorporating T2-weighted and diffusion-weighted magnetic resonance images predicts the existence of lymphovascular invasion / perineural invasion in patients with colorectal cancer.
    Zhang K; Ren Y; Xu S; Lu W; Xie S; Qu J; Wang X; Shen B; Pang P; Cai X; Sun J
    Med Phys; 2021 Sep; 48(9):4872-4882. PubMed ID: 34042185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of transformation in the histopathological growth pattern of colorectal liver metastases after chemotherapy using CT-based radiomics.
    Wei S; Gou X; Zhang Y; Cui J; Liu X; Hong N; Sheng W; Cheng J; Wang Y
    Clin Exp Metastasis; 2024 Apr; 41(2):143-154. PubMed ID: 38416301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computed Tomography-Based Radiomics with Machine Learning Outperforms Radiologist Assessment in Estimating Colorectal Liver Metastases Pathologic Response After Chemotherapy.
    Karagkounis G; Horvat N; Danilova S; Chhabra S; Narayan RR; Barekzai AB; Kleshchelski A; Joanne C; Gonen M; Balachandran V; Soares KC; Wei AC; Kingham TP; Jarnagin WR; Shia J; Chakraborty J; D'Angelica MI
    Ann Surg Oncol; 2024 Dec; 31(13):9196-9204. PubMed ID: 39369120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computed tomography-based radiomics nomogram for the preoperative prediction of perineural invasion in colorectal cancer: a multicentre study.
    Chen Q; Cui Y; Xue T; Peng H; Li M; Zhu X; Duan S; Gu H; Feng F
    Abdom Radiol (NY); 2022 Sep; 47(9):3251-3263. PubMed ID: 35960308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Whole-liver enhanced CT radiomics analysis to predict metachronous liver metastases after rectal cancer surgery.
    Liang M; Ma X; Wang L; Li D; Wang S; Zhang H; Zhao X
    Cancer Imaging; 2022 Sep; 22(1):50. PubMed ID: 36089623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.