These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36841953)

  • 1. Metal-Redox Bicatalysis Batteries for Energy Storage and Chemical Production.
    Yan S; Feng Y; Lin J; Wang Y
    Adv Mater; 2023 Oct; 35(40):e2212078. PubMed ID: 36841953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development, Essence, and Application of a Metal-Catalysis Battery.
    Feng Y; Yan S; Zhang X; Wang Y
    Acc Chem Res; 2023 Jun; 56(12):1645-1655. PubMed ID: 37282625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic Electrode Materials for Energy Storage and Conversion: Mechanism, Characteristics, and Applications.
    Yuan S; Huang X; Kong T; Yan L; Wang Y
    Acc Chem Res; 2024 May; 57(10):1550-1563. PubMed ID: 38723018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities.
    Wang Y; Chu F; Zeng J; Wang Q; Naren T; Li Y; Cheng Y; Lei Y; Wu F
    ACS Nano; 2021 Jan; 15(1):210-239. PubMed ID: 33405889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Photoelectrochemical Energy Storage Materials for Coupled Solar Batteries.
    Zhang X; Jiao L; Wang Y
    Acc Chem Res; 2024 Jun; 57(12):1736-1746. PubMed ID: 38836507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox Electrolytes-Assisting Aqueous Zn-Based Batteries by Pseudocapacitive Multiple Perovskite Fluorides Cathode and Charge Storage Mechanisms.
    Wang A; Ding R; Li Y; Liu M; Yang F; Zhang Y; Fang Q; Yan M; Xie J; Chen Z; Yan Z; He Y; Guo J; Sun X; Liu E
    Small; 2023 Aug; 19(33):e2302333. PubMed ID: 37166023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rechargeable Metal-Sulfur Batteries: Key Materials to Mechanisms.
    Yao W; Liao K; Lai T; Sul H; Manthiram A
    Chem Rev; 2024 Apr; 124(8):4935-5118. PubMed ID: 38598693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative Cationic and Anionic Redox Reactions in Ultrathin Polyvalent Metal Selenide Nanoribbons for High-Performance Electrochemical Magnesium-Ion Storage.
    Xue X; Song X; Yan W; Jiang M; Li F; Zhang XL; Tie Z; Jin Z
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48734-48742. PubMed ID: 36273323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene-Supported Atomically Dispersed Metals as Bifunctional Catalysts for Next-Generation Batteries Based on Conversion Reactions.
    Chen B; Zhong X; Zhou G; Zhao N; Cheng HM
    Adv Mater; 2022 Feb; 34(5):e2105812. PubMed ID: 34677873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes.
    Wang ZL; Xu D; Xu JJ; Zhang XB
    Chem Soc Rev; 2014 Nov; 43(22):7746-86. PubMed ID: 24056780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional materials for rechargeable batteries.
    Cheng F; Liang J; Tao Z; Chen J
    Adv Mater; 2011 Apr; 23(15):1695-715. PubMed ID: 21394791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective.
    Kar M; Simons TJ; Forsyth M; MacFarlane DR
    Phys Chem Chem Phys; 2014 Sep; 16(35):18658-74. PubMed ID: 25093926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rechargeable Al-CO
    Ma W; Liu X; Li C; Yin H; Xi W; Liu R; He G; Zhao X; Luo J; Ding Y
    Adv Mater; 2018 Jul; 30(28):e1801152. PubMed ID: 29782673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rechargeable Metal-Air Proton-Exchange Membrane Batteries for Renewable Energy Storage.
    Nagao M; Kobayashi K; Yamamoto Y; Yamaguchi T; Oogushi A; Hibino T
    ChemElectroChem; 2016 Feb; 3(2):247-255. PubMed ID: 27525212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.