These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36842194)

  • 1. Distribution and the trend of airborne particles and bio-aerosol concentration in pediatric intensive care units with different ventilation setting at two hospitals in Riyadh, Saudi Arabia.
    Alghamdi W; Neamatallah AA; Alshamrani MM; Mehmadi FA; El-Saed A
    J Infect Public Health; 2023 Apr; 16(4):588-595. PubMed ID: 36842194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air cleaning technologies: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2005; 5(17):1-52. PubMed ID: 23074468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systematic review and meta-analysis of indoor bioaerosols in hospitals: The influence of heating, ventilation, and air conditioning.
    Dai R; Liu S; Li Q; Wu H; Wu L; Ji C
    PLoS One; 2021; 16(12):e0259996. PubMed ID: 34941879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of ionic air purifiers for reducing aerosol exposure in confined indoor spaces.
    Grinshpun SA; Mainelis G; Trunov M; Adhikari A; Reponen T; Willeke K
    Indoor Air; 2005 Aug; 15(4):235-45. PubMed ID: 15982270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pilot study to investigate the effects of combined dehumidification and HEPA filtration on dew point and airborne mold spore counts in day care centers.
    Bernstein JA; Levin L; Crandall MS; Perez A; Lanphear B
    Indoor Air; 2005 Dec; 15(6):402-7. PubMed ID: 16268830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating and contextualizing the efficacy of portable HEPA filtration units in small exam rooms.
    Pirkle S; Bozarth S; Robinson N; Hester W; Wagner L; Broome S; Allen K; Mannepalli S
    Am J Infect Control; 2021 Dec; 49(12):1506-1510. PubMed ID: 34390799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can 10× cheaper, lower-efficiency particulate air filters and box fans complement High-Efficiency Particulate Air (HEPA) purifiers to help control the COVID-19 pandemic?
    Srikrishna D
    Sci Total Environ; 2022 Sep; 838(Pt 1):155884. PubMed ID: 35580674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pilot study of directional airflow and containment of airborne particles in the size of Mycobacterium tuberculosis in an operating room.
    Olmsted RN
    Am J Infect Control; 2008 May; 36(4):260-7. PubMed ID: 18455046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effectiveness of stand alone air cleaners for shelter-in-place.
    Ward M; Siegel JA; Corsi RL
    Indoor Air; 2005 Apr; 15(2):127-34. PubMed ID: 15737155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Portable HEPA Purifiers to Eliminate Airborne SARS-CoV-2: A Systematic Review.
    Liu DT; Phillips KM; Speth MM; Besser G; Mueller CA; Sedaghat AR
    Otolaryngol Head Neck Surg; 2022 Apr; 166(4):615-622. PubMed ID: 34098798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microanalysis of indoor aerosols and the impact of a compact high-efficiency particulate air (HEPA) filter system.
    Abraham ME
    Indoor Air; 1999 Mar; 9(1):33-40. PubMed ID: 10195274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioaerosol characteristics in hospital clean rooms.
    Li CS; Hou PA
    Sci Total Environ; 2003 Apr; 305(1-3):169-76. PubMed ID: 12670766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of portable air purifiers as local exhaust ventilation during COVID-19.
    DuBois CK; Murphy MJ; Kramer AJ; Quam JD; Fox AR; Oberlin TJ; Logan PW
    J Occup Environ Hyg; 2022 May; 19(5):310-317. PubMed ID: 35290164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ventilation and filtration on submicrometer particles in an indoor environment.
    Jamriska M; Morawska L; Clark BA
    Indoor Air; 2000 Mar; 10(1):19-26. PubMed ID: 10842457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle and bioaerosol characteristics in a paediatric intensive care unit.
    He C; Mackay IM; Ramsay K; Liang Z; Kidd T; Knibbs LD; Johnson G; McNeale D; Stockwell R; Coulthard MG; Long DA; Williams TJ; Duchaine C; Smith N; Wainwright C; Morawska L
    Environ Int; 2017 Oct; 107():89-99. PubMed ID: 28692913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Dust particles and metals in outdoor and indoor air of Upper Silesia].
    Górny RL; Jedrzejczak A; Pastuszka JS
    Rocz Panstw Zakl Hig; 1995; 46(2):151-61. PubMed ID: 8533033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental studies of particle removal and probability of COVID-19 infection in passenger railcars.
    Das D; Babik KR; Moynihan E; Ramachandran G
    J Occup Environ Hyg; 2023 Jan; 20(1):1-13. PubMed ID: 36256520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of portable filtration units in reducing aerosolized particles in the size range of Mycobacterium tuberculosis.
    Rutala WA; Jones SM; Worthington JM; Reist PC; Weber DJ
    Infect Control Hosp Epidemiol; 1995 Jul; 16(7):391-8. PubMed ID: 7673644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous monitoring of ultrafine, fine, and coarse particles in a residence for 18 months in 1999-2000.
    Wallace L; Howard-Reed C
    J Air Waste Manag Assoc; 2002 Jul; 52(7):828-44. PubMed ID: 12139348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of bio-aerosols type, density, and modeling of dispersion in inside and outside of different wards of educational hospital.
    Yousefzadeh A; Maleki A; Athar SD; Darvishi E; Ahmadi M; Mohammadi E; Tang VT; Kalmarzi RN; Kashefi H
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):14143-14157. PubMed ID: 34601681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.