These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36842324)

  • 1. Genetic circuits in microbial biosensors for heavy metal detection in soil and water.
    Mathur S; Singh D; Ranjan R
    Biochem Biophys Res Commun; 2023 Apr; 652():131-137. PubMed ID: 36842324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering whole-cell microbial biosensors: Design principles and applications in monitoring and treatment of heavy metals and organic pollutants.
    Liu C; Yu H; Zhang B; Liu S; Liu CG; Li F; Song H
    Biotechnol Adv; 2022 Nov; 60():108019. PubMed ID: 35853551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-cell biosensors for detection of heavy metal ions in environmental samples based on metallothionein promoters from Tetrahymena thermophila.
    Amaro F; Turkewitz AP; Martín-González A; Gutiérrez JC
    Microb Biotechnol; 2011 Jul; 4(4):513-22. PubMed ID: 21366892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental sensing of heavy metals through whole cell microbial biosensors: a synthetic biology approach.
    Bereza-Malcolm LT; Mann G; Franks AE
    ACS Synth Biol; 2015 May; 4(5):535-46. PubMed ID: 25299321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic biology for microbial heavy metal biosensors.
    Kim HJ; Jeong H; Lee SJ
    Anal Bioanal Chem; 2018 Feb; 410(4):1191-1203. PubMed ID: 29184994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular Biosensors with Engineered Genetic Circuits.
    Saltepe B; Kehribar EŞ; Su Yirmibeşoğlu SS; Şafak Şeker UÖ
    ACS Sens; 2018 Jan; 3(1):13-26. PubMed ID: 29168381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium.
    Senesi GS; Dell'Aglio M; Gaudiuso R; De Giacomo A; Zaccone C; De Pascale O; Miano TM; Capitelli M
    Environ Res; 2009 May; 109(4):413-20. PubMed ID: 19272593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speciation, toxicity mechanism and remediation ways of heavy metals during composting: A novel theoretical microbial remediation method is proposed.
    Chen X; Zhao Y; Zhang C; Zhang D; Yao C; Meng Q; Zhao R; Wei Z
    J Environ Manage; 2020 Oct; 272():111109. PubMed ID: 32854897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecological network analysis reveals distinctive microbial modules associated with heavy metal contamination of abandoned mine soils in Korea.
    Chun SJ; Kim YJ; Cui Y; Nam KH
    Environ Pollut; 2021 Nov; 289():117851. PubMed ID: 34358869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach.
    Bhat SA; Bashir O; Ul Haq SA; Amin T; Rafiq A; Ali M; Américo-Pinheiro JHP; Sher F
    Chemosphere; 2022 Sep; 303(Pt 1):134788. PubMed ID: 35504464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial metal-lux biosensors for a rapid determination of the heavy metal bioavailability and toxicity in solid samples.
    Corbisier P
    Res Microbiol; 1997; 148(6):534-6. PubMed ID: 9765839
    [No Abstract]   [Full Text] [Related]  

  • 13. Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: A review.
    Saidur MR; Aziz AR; Basirun WJ
    Biosens Bioelectron; 2017 Apr; 90():125-139. PubMed ID: 27886599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative assessment on soil concentration of heavy metal-contaminated soil with various sample pretreatment techniques and detection methods.
    Pan F; Yu Y; Yu L; Lin H; Wang Y; Zhang L; Pan D; Zhu R
    Environ Monit Assess; 2020 Dec; 192(12):800. PubMed ID: 33263163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochar-bacteria-plant partnerships: Eco-solutions for tackling heavy metal pollution.
    Harindintwali JD; Zhou J; Yang W; Gu Q; Yu X
    Ecotoxicol Environ Saf; 2020 Nov; 204():111020. PubMed ID: 32810706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical techniques for estimation of heavy metals in soil ecosystem: a tabulated review.
    Soodan RK; Pakade YB; Nagpal A; Katnoria JK
    Talanta; 2014 Jul; 125():405-10. PubMed ID: 24840464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk assessment for and microbial community changes in Farmland soil contaminated with heavy metals and metalloids.
    Wang X; Gao P; Li D; Liu J; Yang N; Gu W; He X; Tang W
    Ecotoxicol Environ Saf; 2019 Dec; 185():109685. PubMed ID: 31541947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of lab-on-chip biosensor for the detection of toxic heavy metals: A review.
    Karthik V; Karuna B; Kumar PS; Saravanan A; Hemavathy RV
    Chemosphere; 2022 Jul; 299():134427. PubMed ID: 35358561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors.
    Liao VH; Chien MT; Tseng YY; Ou KL
    Environ Pollut; 2006 Jul; 142(1):17-23. PubMed ID: 16298031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.