Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36842345)

  • 1. Artificial intelligence based personalized predictive survival among colorectal cancer patients.
    Susič D; Syed-Abdul S; Dovgan E; Jonnagaddala J; Gradišek A
    Comput Methods Programs Biomed; 2023 Apr; 231():107435. PubMed ID: 36842345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study.
    Yang X; Qiu H; Wang L; Wang X
    J Med Internet Res; 2023 Oct; 25():e44417. PubMed ID: 37883174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Model for Predicting Postoperative Survival of Patients with Colorectal Cancer.
    Osman MH; Mohamed RH; Sarhan HM; Park EJ; Baik SH; Lee KY; Kang J
    Cancer Res Treat; 2022 Apr; 54(2):517-524. PubMed ID: 34126702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Machine Learning Algorithm for Predicting the Risk of Developing to M1b Stage of Patients With Germ Cell Testicular Cancer.
    Ding L; Wang K; Zhang C; Zhang Y; Wang K; Li W; Wang J
    Front Public Health; 2022; 10():916513. PubMed ID: 35844840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Establishment of artificial neural network model for predicting lymph node metastasis in patients with stage Ⅱ-Ⅲ gastric cancer].
    Xue Z; Lu J; Lin J; Huang CM; Li P; Xie JW; Wang JB; Lin JX; Chen QY; Zheng CH
    Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Apr; 25(4):327-335. PubMed ID: 35461201
    [No Abstract]   [Full Text] [Related]  

  • 6. Preoperative prediction of lymph node status in patients with colorectal cancer. Developing a predictive model using machine learning.
    Hartwig M; Bräuner KB; Vogelsang R; Gögenur I
    Int J Colorectal Dis; 2022 Dec; 37(12):2517-2524. PubMed ID: 36435940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of an artificial intelligence prediction model and a survival risk stratification for lung metastasis in colorectal cancer from highly imbalanced data: A multicenter retrospective study.
    Zhang W; Guan X; Jiao S; Wang G; Wang X
    Eur J Surg Oncol; 2023 Dec; 49(12):107107. PubMed ID: 37883884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive models based on machine learning for bone metastasis in patients with diagnosed colorectal cancer.
    Li T; Huang H; Zhang S; Zhang Y; Jing H; Sun T; Zhang X; Lu L; Zhang M
    Front Public Health; 2022; 10():984750. PubMed ID: 36203663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LASSO-Based Machine Learning Algorithm for Prediction of Lymph Node Metastasis in T1 Colorectal Cancer.
    Kang J; Choi YJ; Kim IK; Lee HS; Kim H; Baik SH; Kim NK; Lee KY
    Cancer Res Treat; 2021 Jul; 53(3):773-783. PubMed ID: 33421980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of a machine learning model to predict the risk of lymph node metastasis in renal carcinoma.
    Feng X; Hong T; Liu W; Xu C; Li W; Yang B; Song Y; Li T; Li W; Zhou H; Yin C
    Front Endocrinol (Lausanne); 2022; 13():1054358. PubMed ID: 36465636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Predictive Model for the 10-year Overall Survival Status of Patients With Distant Metastases From Differentiated Thyroid Cancer Using XGBoost Algorithm-A Population-Based Analysis.
    Jin S; Yang X; Zhong Q; Liu X; Zheng T; Zhu L; Yang J
    Front Genet; 2022; 13():896805. PubMed ID: 35873493
    [No Abstract]   [Full Text] [Related]  

  • 12. How Does the Skeletal Oncology Research Group Algorithm's Prediction of 5-year Survival in Patients with Chondrosarcoma Perform on International Validation?
    Bongers MER; Karhade AV; Setola E; Gambarotti M; Groot OQ; Erdoğan KE; Picci P; Donati DM; Schwab JH; Palmerini E
    Clin Orthop Relat Res; 2020 Oct; 478(10):2300-2308. PubMed ID: 32433107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The EPOS-CC Score: An Integration of Independent, Tumor- and Patient-Associated Risk Factors to Predict 5-years Overall Survival Following Colorectal Cancer Surgery.
    Haga Y; Ikejiri K; Wada Y; Ikenaga M; Koike S; Nakamura S; Koseki M
    World J Surg; 2015 Jun; 39(6):1567-77. PubMed ID: 25651953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning approaches for prediction of early death among lung cancer patients with bone metastases using routine clinical characteristics: An analysis of 19,887 patients.
    Cui Y; Shi X; Wang S; Qin Y; Wang B; Che X; Lei M
    Front Public Health; 2022; 10():1019168. PubMed ID: 36276398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting hospitalization following psychiatric crisis care using machine learning.
    Blankers M; van der Post LFM; Dekker JJM
    BMC Med Inform Decis Mak; 2020 Dec; 20(1):332. PubMed ID: 33302948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially varying effects of predictors for the survival prediction of nonmetastatic colorectal Cancer.
    Tian Y; Li J; Zhou T; Tong D; Chi S; Kong X; Ding K; Li J
    BMC Cancer; 2018 Nov; 18(1):1084. PubMed ID: 30409119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning and treatment outcome prediction for oral cancer.
    Chu CS; Lee NP; Adeoye J; Thomson P; Choi SW
    J Oral Pathol Med; 2020 Nov; 49(10):977-985. PubMed ID: 32740951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Colorectal Cancer Recurrence and Patient Survival Using Supervised Machine Learning Approach: A South African Population-Based Study.
    Achilonu OJ; Fabian J; Bebington B; Singh E; Eijkemans MJC; Musenge E
    Front Public Health; 2021; 9():694306. PubMed ID: 34307286
    [No Abstract]   [Full Text] [Related]  

  • 19. Predictors of 30-Day Mortality Among Dutch Patients Undergoing Colorectal Cancer Surgery, 2011-2016.
    van den Bosch T; Warps AK; de Nerée Tot Babberich MPM; Stamm C; Geerts BF; Vermeulen L; Wouters MWJM; Dekker JWT; Tollenaar RAEM; Tanis PJ; Miedema DM;
    JAMA Netw Open; 2021 Apr; 4(4):e217737. PubMed ID: 33900400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of several machine learning algorithms for the prediction of afatinib treatment outcome in advanced-stage EGFR-mutated non-small-cell lung cancer.
    Kim T; Lee SJ; Jang TW
    Thorac Cancer; 2022 Dec; 13(23):3353-3361. PubMed ID: 36278315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.