BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36842382)

  • 1. Environmental effect of agriculture-related manufactured nano-objects on soil microbial communities.
    Ahmed A; He P; He P; Wu Y; He Y; Munir S
    Environ Int; 2023 Mar; 173():107819. PubMed ID: 36842382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-enabled pesticides for sustainable agriculture and global food security.
    Wang D; Saleh NB; Byro A; Zepp R; Sahle-Demessie E; Luxton TP; Ho KT; Burgess RM; Flury M; White JC; Su C
    Nat Nanotechnol; 2022 Apr; 17(4):347-360. PubMed ID: 35332293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating nanotechnology with plant microbiome for next-generation crop health.
    Hussain M; Zahra N; Lang T; Zain M; Raza M; Shakoor N; Adeel M; Zhou H
    Plant Physiol Biochem; 2023 Mar; 196():703-711. PubMed ID: 36809731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture.
    Rai S; Omar AF; Rehan M; Al-Turki A; Sagar A; Ilyas N; Sayyed RZ; Hasanuzzaman M
    Planta; 2022 Dec; 257(2):27. PubMed ID: 36583789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of nanofertilizers on soil and plant-associated microbial communities: Emerging trends and perspectives.
    Kalwani M; Chakdar H; Srivastava A; Pabbi S; Shukla P
    Chemosphere; 2022 Jan; 287(Pt 2):132107. PubMed ID: 34492409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A critical review of the environmental impacts of manufactured nano-objects on earthworm species.
    Adeel M; Shakoor N; Shafiq M; Pavlicek A; Part F; Zafiu C; Raza A; Ahmad MA; Jilani G; White JC; Ehmoser EK; Lynch I; Ming X; Rui Y
    Environ Pollut; 2021 Dec; 290():118041. PubMed ID: 34523513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomics as a potential tool to unravel the rhizosphere microbiome interactions on plant health.
    Priya P; Aneesh B; Harikrishnan K
    J Microbiol Methods; 2021 Jun; 185():106215. PubMed ID: 33839214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Host-mediated gene engineering and microbiome-based technology optimization for sustainable agriculture and environment.
    Thakur N; Nigam M; Mann NA; Gupta S; Hussain CM; Shukla SK; Shah AA; Casini R; Elansary HO; Khan SA
    Funct Integr Genomics; 2023 Feb; 23(1):57. PubMed ID: 36752963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhizospheric microbiome: Bio-based emerging strategies for sustainable agriculture development and future perspectives.
    Kumawat KC; Razdan N; Saharan K
    Microbiol Res; 2022 Jan; 254():126901. PubMed ID: 34700186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Microbial Connection to Sustainable Agriculture.
    Nadarajah K; Abdul Rahman NSN
    Plants (Basel); 2023 Jun; 12(12):. PubMed ID: 37375932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards sustainable agriculture: rhizosphere microbiome engineering.
    Bano S; Wu X; Zhang X
    Appl Microbiol Biotechnol; 2021 Oct; 105(19):7141-7160. PubMed ID: 34508284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combating biotic stresses in plants by synthetic microbial communities: Principles, applications and challenges.
    Pradhan S; Tyagi R; Sharma S
    J Appl Microbiol; 2022 Nov; 133(5):2742-2759. PubMed ID: 36039728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanotechnology in agriculture: Current status, challenges and future opportunities.
    Usman M; Farooq M; Wakeel A; Nawaz A; Cheema SA; Rehman HU; Ashraf I; Sanaullah M
    Sci Total Environ; 2020 Jun; 721():137778. PubMed ID: 32179352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbiome for sustainable agriculture: a review with special reference to the corn production system.
    Jat SL; Suby SB; Parihar CM; Gambhir G; Kumar N; Rakshit S
    Arch Microbiol; 2021 Aug; 203(6):2771-2793. PubMed ID: 33884458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde.
    Mahapatra S; Yadav R; Ramakrishna W
    J Appl Microbiol; 2022 May; 132(5):3543-3562. PubMed ID: 35137494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foodomics as part of the host-microbiota-exposome interplay.
    Putignani L; Dallapiccola B
    J Proteomics; 2016 Sep; 147():3-20. PubMed ID: 27130534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing phosphate-solubilising microbial communities through artificial selection.
    Faller L; Leite MFA; Kuramae EE
    Nat Commun; 2024 Feb; 15(1):1649. PubMed ID: 38388537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging frontiers in microbe-mediated pesticide remediation: Unveiling role of omics and In silico approaches in engineered environment.
    Malla MA; Dubey A; Raj A; Kumar A; Upadhyay N; Yadav S
    Environ Pollut; 2022 Apr; 299():118851. PubMed ID: 35085655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crop rotation stage has a greater effect than fertilisation on soil microbiome assembly and enzymatic stoichiometry.
    Xie Y; Ouyang Y; Han S; Se J; Tang S; Yang Y; Ma Q; Wu L
    Sci Total Environ; 2022 Apr; 815():152956. PubMed ID: 34999069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Soil Microbiota Recovery in the Agroecosystem: Minimal Information and a New Framework for Sustainable Agriculture.
    Bergna A; Maund SJ; Screpanti C
    Int J Environ Res Public Health; 2022 Apr; 19(9):. PubMed ID: 35564818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.