These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 36842508)
1. Sustainable microalgal cultivation in poultry slaughterhouse wastewater for biorefinery products and pollutant removal. Ummalyma SB; Chiang A; Herojit N; Arumugam M Bioresour Technol; 2023 Apr; 374():128790. PubMed ID: 36842508 [TBL] [Abstract][Full Text] [Related]
2. Acid precipitation followed by microalgae (Chlorella vulgaris) cultivation as a new approach for poultry slaughterhouse wastewater treatment. Terán Hilares R; Garcia Bustos KA; Sanchez Vera FP; Colina Andrade GJ; Pacheco Tanaka DA Bioresour Technol; 2021 Sep; 335():125284. PubMed ID: 34022477 [TBL] [Abstract][Full Text] [Related]
3. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production. Yadav G; Dash SK; Sen R Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810 [TBL] [Abstract][Full Text] [Related]
4. Microalgal bioremediation of brackish aquaculture wastewater. Kashem AHM; Das P; AbdulQuadir M; Khan S; Thaher MI; Alghasal G; Hawari AH; Al-Jabri H Sci Total Environ; 2023 May; 873():162384. PubMed ID: 36841414 [TBL] [Abstract][Full Text] [Related]
5. Bioremediation of Pyropia-processing wastewater coupled with lipid production using Chlorella sp. Zheng S; Chen S; Zou S; Yan Y; Gao G; He M; Wang C; Chen H; Wang Q Bioresour Technol; 2021 Feb; 321():124428. PubMed ID: 33272824 [TBL] [Abstract][Full Text] [Related]
6. Bioenergy potential of the residual microalgal biomass produced in city wastewater assessed through pyrolysis, kinetics and thermodynamics study to design algal biorefinery. Shahid A; Ishfaq M; Ahmad MS; Malik S; Farooq M; Hui Z; Batawi AH; Shafi ME; Aloqbi AA; Gull M; Mehmood MA Bioresour Technol; 2019 Oct; 289():121701. PubMed ID: 31271917 [TBL] [Abstract][Full Text] [Related]
7. [Selection of Microalgae for Biofuel Using Municipal Wastewater as a Resource]. Han SF; Jin WB; Tu RJ; Chen HY Huan Jing Ke Xue; 2017 Aug; 38(8):3347-3353. PubMed ID: 29964943 [TBL] [Abstract][Full Text] [Related]
8. Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Qin L; Wang Z; Sun Y; Shu Q; Feng P; Zhu L; Xu J; Yuan Z Environ Sci Pollut Res Int; 2016 May; 23(9):8379-87. PubMed ID: 26780059 [TBL] [Abstract][Full Text] [Related]
9. Bioremediation and biomass production of microalgae cultivation in river watercontaminated with pharmaceutical effluent. Singh A; Ummalyma SB; Sahoo D Bioresour Technol; 2020 Jul; 307():123233. PubMed ID: 32240927 [TBL] [Abstract][Full Text] [Related]
10. Cultivation of Chlorella sp. using raw dairy wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Lu W; Wang Z; Wang X; Yuan Z Bioresour Technol; 2015 Sep; 192():382-8. PubMed ID: 26056780 [TBL] [Abstract][Full Text] [Related]
11. Biohydrogen production coupled with wastewater treatment using selected microalgae. Satheesh S; Pugazhendi A; Al-Mur BA; Balasubramani R Chemosphere; 2023 Sep; 334():138932. PubMed ID: 37209846 [TBL] [Abstract][Full Text] [Related]
12. A novel fungal-algal coupling system for slaughterhouse wastewater treatment and lipid production. Shi Z; Tan X; Li Y; Sheng Y; Zhang Q; Xu J; Yang Y Bioresour Technol; 2023 Nov; 387():129585. PubMed ID: 37517707 [TBL] [Abstract][Full Text] [Related]
13. Microalgae cultivation for the treatment of anaerobically digested municipal centrate (ADMC) and anaerobically digested abattoir effluent (ADAE). Vadiveloo A; Foster L; Kwambai C; Bahri PA; Moheimani NR Sci Total Environ; 2021 Jun; 775():145853. PubMed ID: 33621869 [TBL] [Abstract][Full Text] [Related]
14. Biosynthesis of microalgal lipids, proteins, lutein, and carbohydrates using fish farming wastewater and forest biomass under photoautotrophic and heterotrophic cultivation. Vyas S; Patel A; Nabil Risse E; Krikigianni E; Rova U; Christakopoulos P; Matsakas L Bioresour Technol; 2022 Sep; 359():127494. PubMed ID: 35724910 [TBL] [Abstract][Full Text] [Related]
15. Bioremediation potential of the Chlorella and Scenedesmus microalgae in explosives production effluents. Condori MAM; Condori MM; Gutierrez MEV; Choix FJ; García-Camacho F Sci Total Environ; 2024 Apr; 920():171004. PubMed ID: 38369159 [TBL] [Abstract][Full Text] [Related]
16. Integration of microalgae cultivation and anaerobic co-digestion with dairy wastewater to enhance bioenergy and biochemicals production. Kusmayadi A; Huang CY; Kit Leong Y; Lu PH; Yen HW; Lee DJ; Chang JS Bioresour Technol; 2023 May; 376():128858. PubMed ID: 36907225 [TBL] [Abstract][Full Text] [Related]
17. Efficient PAHs removal and CO Daniela Rios Ramirez K; Botero Ñañez K; Leonardo Gonzalez Gomez C; Thiago Andrade Moreira Í Environ Res; 2024 Nov; 261():119672. PubMed ID: 39053760 [TBL] [Abstract][Full Text] [Related]
18. Integrating anaerobic digestion and microalgae cultivation for dairy wastewater treatment and potential biochemicals production from the harvested microalgal biomass. Kusmayadi A; Lu PH; Huang CY; Leong YK; Yen HW; Chang JS Chemosphere; 2022 Mar; 291(Pt 1):133057. PubMed ID: 34838828 [TBL] [Abstract][Full Text] [Related]
19. Optimising of Scenedesmus sp. biomass production in chicken slaughterhouse wastewater using response surface methodology and potential utilisation as fish feeds. Yaakob MA; Mohamed RMSR; Al-Gheethi A; Tiey A; Kassim AHM Environ Sci Pollut Res Int; 2019 Apr; 26(12):12089-12108. PubMed ID: 30827020 [TBL] [Abstract][Full Text] [Related]
20. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microalgae. Guo WQ; Zheng HS; Li S; Du JS; Feng XC; Yin RL; Wu QL; Ren NQ; Chang JS Bioresour Technol; 2016 Dec; 221():284-290. PubMed ID: 27643737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]