These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36842973)

  • 41. Advanced lipid based biosensors for food analysis.
    Nikoleli GP
    Adv Food Nutr Res; 2020; 91():301-321. PubMed ID: 32035600
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanotechnology-based approaches for effective detection of tumor markers: A comprehensive state-of-the-art review.
    Laraib U; Sargazi S; Rahdar A; Khatami M; Pandey S
    Int J Biol Macromol; 2022 Jan; 195():356-383. PubMed ID: 34920057
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Safety of nanotechnology in food industries.
    Amini SM; Gilaki M; Karchani M
    Electron Physician; 2014; 6(4):962-8. PubMed ID: 25763176
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of point-of-care nanobiosensors for breast cancers diagnosis.
    Sharifi M; Hasan A; Attar F; Taghizadeh A; Falahati M
    Talanta; 2020 Sep; 217():121091. PubMed ID: 32498898
    [TBL] [Abstract][Full Text] [Related]  

  • 45. QD-based fluorescent nanosensors: Production methods, optoelectronic properties, and recent food applications.
    Jia Z; Shi C; Yang X; Zhang J; Sun X; Guo Y; Ying X
    Compr Rev Food Sci Food Saf; 2023 Nov; 22(6):4644-4669. PubMed ID: 37680064
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review.
    Sargazi S; Fatima I; Hassan Kiani M; Mohammadzadeh V; Arshad R; Bilal M; Rahdar A; Díez-Pascual AM; Behzadmehr R
    Int J Biol Macromol; 2022 May; 206():115-147. PubMed ID: 35231532
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of Two-Dimensional Nanomaterials Based Electrochemical Biosensors on Enhancing the Analysis of Food Toxicants.
    Raja IS; Vedhanayagam M; Preeth DR; Kim C; Lee JH; Han DW
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33806998
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polyvalent Nanoobjects for Precision Diagnostics.
    Omstead DT; Sjoerdsma J; Bilgicer B
    Annu Rev Anal Chem (Palo Alto Calif); 2019 Jun; 12(1):69-88. PubMed ID: 30811215
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants.
    Liaquat H; Imran M; Latif S; Hussain N; Bilal M
    Environ Res; 2022 Nov; 214(Pt 1):113795. PubMed ID: 35803339
    [TBL] [Abstract][Full Text] [Related]  

  • 50. FET-based nanobiosensors for the detection of smell and taste.
    Moon D; Cha YK; Kim SO; Cho S; Ko HJ; Park TH
    Sci China Life Sci; 2020 Aug; 63(8):1159-1167. PubMed ID: 31974862
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nano-sized structures for the detection of food components and contaminants.
    Dudak FC; Bas D; Basaran-Akgul N; Tamer U; Boyaci IH
    Front Biosci (Elite Ed); 2011 Jun; 3(3):1109-27. PubMed ID: 21622118
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optical nanosensors based on noble metal nanoclusters for detecting food contaminants: A review.
    Pang L; Pi X; Zhao Q; Man C; Yang X; Jiang Y
    Compr Rev Food Sci Food Saf; 2024 Jan; 23(1):e13295. PubMed ID: 38284598
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optical nanosensors for detecting proteins and biomarkers in individual living cells.
    Vo-Dinh T
    Methods Mol Biol; 2005; 300():383-401. PubMed ID: 15657493
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Need for safety of nanoparticles used in food industry.
    Das M; Ansari KM; Tripathi A; Dwivedi PD
    J Biomed Nanotechnol; 2011 Feb; 7(1):13-4. PubMed ID: 21485778
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanoparticle-based immunosensors and immunoassays for aflatoxins.
    Wang X; Niessner R; Tang D; Knopp D
    Anal Chim Acta; 2016 Mar; 912():10-23. PubMed ID: 26920768
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanomaterials based optical and electrochemical sensing of histamine: Progress and perspectives.
    Yadav S; Nair SS; Sai VVR; Satija J
    Food Res Int; 2019 May; 119():99-109. PubMed ID: 30884738
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel Biosensors for the Rapid Detection of Toxicants in Foods.
    Nikoleli GP; Nikolelis DP; Siontorou CG; Karapetis S; Varzakas T
    Adv Food Nutr Res; 2018; 84():57-102. PubMed ID: 29555073
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lateral flow based immunobiosensors for detection of food contaminants.
    Raeisossadati MJ; Danesh NM; Borna F; Gholamzad M; Ramezani M; Abnous K; Taghdisi SM
    Biosens Bioelectron; 2016 Dec; 86():235-246. PubMed ID: 27376194
    [TBL] [Abstract][Full Text] [Related]  

  • 59. DNA/Nano based advanced genetic detection tools for authentication of species: Strategies, prospects and limitations.
    Khalil I; Hashem A; Nath AR; Muhd Julkapli N; Yehye WA; Basirun WJ
    Mol Cell Probes; 2021 Oct; 59():101758. PubMed ID: 34252563
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein biosensors based on polymer nanowires, carbon nanotubes and zinc oxide nanorods.
    Anish Kumar M; Jung S; Ji T
    Sensors (Basel); 2011; 11(5):5087-111. PubMed ID: 22163892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.