These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 36842976)
21. Finger competition dynamics in rotating Hele-Shaw cells. Gadêlha H; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066308. PubMed ID: 15697503 [TBL] [Abstract][Full Text] [Related]
22. Subcritical Kelvin-Helmholtz instability in a Hele-Shaw cell. Meignin L; Gondret P; Ruyer-Quil C; Rabaud M Phys Rev Lett; 2003 Jun; 90(23):234502. PubMed ID: 12857263 [TBL] [Abstract][Full Text] [Related]
23. Pinch-off singularities in rotating Hele-Shaw flows at high viscosity contrast. Alvarez-Lacalle E; Casademunt J; Eggers J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056306. PubMed ID: 20365072 [TBL] [Abstract][Full Text] [Related]
24. Ferrofluid patterns in a radial magnetic field: linear stability, nonlinear dynamics, and exact solutions. Oliveira RM; Miranda JA; Leandro ES Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016304. PubMed ID: 18351931 [TBL] [Abstract][Full Text] [Related]
25. Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions. Lira SA; Miranda JA Phys Rev E; 2016 Jan; 93(1):013129. PubMed ID: 26871176 [TBL] [Abstract][Full Text] [Related]
26. Coriolis effects on rotating Hele-Shaw flows: a conformal-mapping approach. Miranda JA; Gadêlha H; Dorsey AT Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066306. PubMed ID: 21230733 [TBL] [Abstract][Full Text] [Related]
27. Capillary and geometrically driven fingering instability in nonflat Hele-Shaw cells. Brandão R; Miranda JA Phys Rev E; 2017 Mar; 95(3-1):033104. PubMed ID: 28415178 [TBL] [Abstract][Full Text] [Related]
28. Gap size effects for the Kelvin-Helmholtz instability in a Hele-Shaw cell. Meignin L; Ern P; Gondret P; Rabaud M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026308. PubMed ID: 11497700 [TBL] [Abstract][Full Text] [Related]
29. Effect of Hele-Shaw cell gap on radial viscous fingering. Nand S; Sharma V; Das SK; Padhee SS; Mishra M Sci Rep; 2022 Nov; 12(1):18967. PubMed ID: 36347906 [TBL] [Abstract][Full Text] [Related]
30. Diffuse-interface approach to rotating Hele-Shaw flows. Chen CY; Huang YS; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046302. PubMed ID: 22181256 [TBL] [Abstract][Full Text] [Related]
31. Viscous fingering as a paradigm of interfacial pattern formation: recent results and new challenges. Casademunt J Chaos; 2004 Sep; 14(3):809-24. PubMed ID: 15446992 [TBL] [Abstract][Full Text] [Related]
32. Viscous normal stresses and fingertip tripling in radial Hele-Shaw flows. Coutinho ÍM; Rocha FM; Miranda JA Phys Rev E; 2021 Oct; 104(4-2):045106. PubMed ID: 34781440 [TBL] [Abstract][Full Text] [Related]
33. Parallel flow in hele-shaw cells with ferrofluids. Miranda JA; Widom M Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):2114-7. PubMed ID: 11046508 [TBL] [Abstract][Full Text] [Related]
34. Kelvin-Helmholtz and Holmboe instabilities of a diffusive interface between miscible phases. Zagvozkin T; Vorobev A; Lyubimova T Phys Rev E; 2019 Aug; 100(2-1):023103. PubMed ID: 31574712 [TBL] [Abstract][Full Text] [Related]
35. Linear stability of a horizontal phase boundary subjected to shear motion. Kheniene A; Vorobev A Eur Phys J E Soft Matter; 2015 Jul; 38(7):77. PubMed ID: 26174431 [TBL] [Abstract][Full Text] [Related]
36. Electrohydrostatically driven flow and instability in a vertical hele-shaw cell. Ward T Langmuir; 2008 Apr; 24(7):3611-20. PubMed ID: 18303922 [TBL] [Abstract][Full Text] [Related]
37. Morphological patterns and interface instability during withdrawal of liquid-particle mixtures. Li D; Yang Z; Zhang R; Hu R; Chen YF J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1598-1607. PubMed ID: 34742076 [TBL] [Abstract][Full Text] [Related]
38. Effects of circular rigid boundaries and Coriolis forces on the interfacial instability in a rotating annular Hele-Shaw cell. Abidate A; Aniss S; Caballina O; Souhar M Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046307. PubMed ID: 17500993 [TBL] [Abstract][Full Text] [Related]
39. Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. Folch R; Casademunt J; Hernández-Machado A; Ramírez-Piscina L Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1724-33. PubMed ID: 11969954 [TBL] [Abstract][Full Text] [Related]
40. Interface evolution during radial miscible viscous fingering. Chui JY; de Anna P; Juanes R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):041003. PubMed ID: 26565159 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]