BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36844099)

  • 1. A phylogenomic study of Iridaceae Juss. based on complete plastid genome sequences.
    Kamra K; Jung J; Kim JH
    Front Plant Sci; 2023; 14():1066708. PubMed ID: 36844099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide diversity and phylogenetic relationships among Gladiolus cultivars and related taxa of family Iridaceae.
    Singh N; Meena B; Pal AK; Roy RK; Tewari SK; Tamta S; Rana TS
    J Genet; 2017 Mar; 96(1):135-145. PubMed ID: 28360398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular systematics of Iridaceae: evidence from four plastid DNA regions.
    Reeves G; Chase MW; Goldblatt P; Rudall P; Fay MF; Cox AV; Lejeune B; Souza-Chies T
    Am J Bot; 2001 Nov; 88(11):2074-87. PubMed ID: 21669639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative chloroplast genome analysis of Artemisia (Asteraceae) in East Asia: insights into evolutionary divergence and phylogenomic implications.
    Kim GB; Lim CE; Kim JS; Kim K; Lee JH; Yu HJ; Mun JH
    BMC Genomics; 2020 Jun; 21(1):415. PubMed ID: 32571207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Analyses of Complete Chloroplast Genomes and Karyotypes of Allotetraploid
    Park I; Choi B; Weiss-Schneeweiss H; So S; Myeong HH; Jang TS
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete plastid genome of Iris orchioides and comparative analysis with 19 Iris plastomes.
    Choi TY; Lee SR
    PLoS One; 2024; 19(4):e0301346. PubMed ID: 38578735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complete chloroplast genome of Onobrychis gaubae (Fabaceae-Papilionoideae): comparative analysis with related IR-lacking clade species.
    Moghaddam M; Ohta A; Shimizu M; Terauchi R; Kazempour-Osaloo S
    BMC Plant Biol; 2022 Feb; 22(1):75. PubMed ID: 35183127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenomic inference in extremis: A case study with mycoheterotroph plastomes.
    Lam VKY; Darby H; Merckx VSFT; Lim G; Yukawa T; Neubig KM; Abbott JR; Beatty GE; Provan J; Soto Gomez M; Graham SW
    Am J Bot; 2018 Mar; 105(3):480-494. PubMed ID: 29730895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A plastid phylogenomic framework for the palm family (Arecaceae).
    Yao G; Zhang YQ; Barrett C; Xue B; Bellot S; Baker WJ; Ge XJ
    BMC Biol; 2023 Mar; 21(1):50. PubMed ID: 36882831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On Pattern-Cladistic Analyses Based on Complete Plastid Genome Sequences.
    Mavrodiev EV; Madorsky A
    Acta Biotheor; 2023 Nov; 71(4):22. PubMed ID: 37922001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phylogenomic and comparative analyses of Coffeeae alliance (Rubiaceae): deep insights into phylogenetic relationships and plastome evolution.
    Amenu SG; Wei N; Wu L; Oyebanji O; Hu G; Zhou Y; Wang Q
    BMC Plant Biol; 2022 Feb; 22(1):88. PubMed ID: 35219317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analyses of Linderniaceae plastomes, with implications for its phylogeny and evolution.
    Yan R; Geng Y; Jia Y; Xiang C; Zhou X; Hu G
    Front Plant Sci; 2023; 14():1265641. PubMed ID: 37828930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of two Korean irises (Iris ruthenica and I. uniflora, Iridaceae) based on plastome sequencing and micromorphology.
    Choi B; Park I; So S; Myeong HH; Ryu J; Ahn YE; Shim KC; Song JH; Jang TS
    Sci Rep; 2022 Jun; 12(1):9424. PubMed ID: 35676304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plastome structure of 8 Calanthe s.l. species (Orchidaceae): comparative genomics, phylogenetic analysis.
    Nanjala C; Wanga VO; Odago W; Mutinda ES; Waswa EN; Oulo MA; Mkala EM; Kuja J; Yang JX; Dong X; Hu GW; Wang QF
    BMC Plant Biol; 2022 Aug; 22(1):387. PubMed ID: 35918646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae.
    Szczecińska M; Sawicki J
    Int J Mol Sci; 2015 Sep; 16(9):22258-79. PubMed ID: 26389887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights Into Chloroplast Genome Evolution Across Opuntioideae (Cactaceae) Reveals Robust Yet Sometimes Conflicting Phylogenetic Topologies.
    Köhler M; Reginato M; Souza-Chies TT; Majure LC
    Front Plant Sci; 2020; 11():729. PubMed ID: 32636853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastome Rearrangements in the "
    Fonseca LHM; Lohmann LG
    Front Plant Sci; 2017; 8():1875. PubMed ID: 29163600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plastid Genome Evolution in the Early-Diverging Legume Subfamily Cercidoideae (Fabaceae).
    Wang YH; Wicke S; Wang H; Jin JJ; Chen SY; Zhang SD; Li DZ; Yi TS
    Front Plant Sci; 2018; 9():138. PubMed ID: 29479365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quality and quantity of data recovered from massively parallel sequencing: Examples in Asparagales and Poaceae.
    Steele PR; Hertweck KL; Mayfield D; McKain MR; Leebens-Mack J; Pires JC
    Am J Bot; 2012 Feb; 99(2):330-48. PubMed ID: 22291168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into phylogenetic relationships and genome evolution of subfamily Commelinoideae (Commelinaceae Mirb.) inferred from complete chloroplast genomes.
    Jung J; Kim C; Kim JH
    BMC Genomics; 2021 Apr; 22(1):231. PubMed ID: 33794772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.