These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Niobium-Doped TiO Yan W; Liu X Inorg Chem; 2019 Mar; 58(5):3090-3098. PubMed ID: 30788959 [TBL] [Abstract][Full Text] [Related]
23. SiH/TiO2 and GeH/TiO2 heterojunctions: promising TiO2-based photocatalysts under visible light. Niu M; Cheng D; Cao D Sci Rep; 2014 May; 4():4810. PubMed ID: 24787027 [TBL] [Abstract][Full Text] [Related]
24. Impact of boron and indium doping on the structural, electronic and optical properties of SnO Filippatos PP; Kelaidis N; Vasilopoulou M; Davazoglou D; Chroneos A Sci Rep; 2021 Jun; 11(1):13031. PubMed ID: 34158538 [TBL] [Abstract][Full Text] [Related]
25. The influence of defects on Mo-doped TiO2 by first-principles studies. Yu X; Hou T; Sun X; Li Y Chemphyschem; 2012 Apr; 13(6):1514-21. PubMed ID: 22411783 [TBL] [Abstract][Full Text] [Related]
26. Oxygen Vacancy Mediated Band-Gap Engineering via B-Doping for Enhancing Z-Scheme A-TiO Liu C; Xu C; Wang W; Chen L; Li X; Wu Y Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903674 [TBL] [Abstract][Full Text] [Related]
27. New insight into the enhanced visible-light photocatalytic activities of B-, C- and B/C-doped anatase TiO2 by first-principles. Yu J; Zhou P; Li Q Phys Chem Chem Phys; 2013 Aug; 15(29):12040-7. PubMed ID: 23426398 [TBL] [Abstract][Full Text] [Related]
28. Mo-doped TiO2 with enhanced visible light photocatalytic activity: a combined experimental and theoretical study. Khan M; Xu J; Cao W; Liu ZK J Nanosci Nanotechnol; 2014 Sep; 14(9):6865-71. PubMed ID: 25924342 [TBL] [Abstract][Full Text] [Related]
29. Theoretical prediction of the band offsets at the ZnO/anatase TiO2 and GaN/ZnO heterojunctions using the self-consistent ab initio DFT/GGA-1/2 method. Fang DQ; Zhang SL J Chem Phys; 2016 Jan; 144(1):014704. PubMed ID: 26747815 [TBL] [Abstract][Full Text] [Related]
30. First-principles calculations and experimental investigation on SnO Chen S; Liu F; Xu M; Yan J; Zhang F; Zhao W; Zhang Z; Deng Z; Yun J; Chen R; Liu C J Colloid Interface Sci; 2019 Oct; 553():613-621. PubMed ID: 31247500 [TBL] [Abstract][Full Text] [Related]
31. Effect of Co Doping on the Physical Properties and Organic Pollutant Photodegradation Efficiency of ZnO Nanoparticles for Environmental Applications. Saadi H; Khaldi O; Pina J; Costa T; Seixas de Melo JS; Vilarinho P; Benzarti Z Nanomaterials (Basel); 2024 Jan; 14(1):. PubMed ID: 38202577 [TBL] [Abstract][Full Text] [Related]
32. Defect engineered N-S codoped TiO Kandasamy M; Seetharaman A; Lakshmy S; Arjunan N; Manickavasakam K; Shetty M; Kanchana S; Qin J; Jothivenkatachalam K; Chakraborty B Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 310():123846. PubMed ID: 38237499 [TBL] [Abstract][Full Text] [Related]
34. Tuning the charge state of Ag and Au atoms and clusters deposited on oxide surfaces by doping: a DFT study of the adsorption properties of nitrogen- and niobium-doped TiO2 and ZrO2. Schlexer P; Ruiz Puigdollers A; Pacchioni G Phys Chem Chem Phys; 2015 Sep; 17(34):22342-60. PubMed ID: 26248205 [TBL] [Abstract][Full Text] [Related]
35. Relevance of Dispersion and the Electronic Spin in the DFT + Torres AE; Rodríguez-Pineda J; Zanella R ACS Omega; 2021 Sep; 6(36):23170-23180. PubMed ID: 34549118 [TBL] [Abstract][Full Text] [Related]
36. N-Doped TiO2 Nanobelts with Coexposed (001) and (101) Facets and Their Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production. Sun S; Gao P; Yang Y; Yang P; Chen Y; Wang Y ACS Appl Mater Interfaces; 2016 Jul; 8(28):18126-31. PubMed ID: 27356016 [TBL] [Abstract][Full Text] [Related]
37. Nb and Ta layer doping effects on the interfacial energetics and electronic properties of LaAlO3/SrTiO3 heterostructure: first-principles analysis. Nazir S; Behtash M; Cheng J; Luo J; Yang K Phys Chem Chem Phys; 2016 Jan; 18(4):2379-88. PubMed ID: 26562134 [TBL] [Abstract][Full Text] [Related]
38. Synergistic Effect of Doping and Compositing on Photocatalytic Efficiency: A Case Study of La Ma Z; Li Y; Lv Y; Sa R; Li Q; Wu K ACS Appl Mater Interfaces; 2018 Nov; 10(45):39327-39335. PubMed ID: 30354057 [TBL] [Abstract][Full Text] [Related]
39. Subsurface depth dependence of nitrogen doping in TiO Kakil SA; Abdullah HY; Abdullah TG; Manini N J Phys Condens Matter; 2021 Apr; 33(20):. PubMed ID: 33242842 [TBL] [Abstract][Full Text] [Related]
40. Manganese doping mechanism in a CsPbI An J; Jiang H; Tian Y; Xue H; Tang F Phys Chem Chem Phys; 2019 Nov; 21(42):23552-23558. PubMed ID: 31617523 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]