These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36844242)

  • 1. Osteoconductivity of bone substitutes with filament-based microarchitectures: Influence of directionality, filament dimension, and distance.
    Guerrero J; Ghayor C; Bhattacharya I; Weber FE
    Int J Bioprint; 2023; 9(1):626. PubMed ID: 36844242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Printed Hydroxyapatite Bone Substitutes Designed by a Novel Periodic Minimal Surface Algorithm Are Highly Osteoconductive.
    Maevskaia E; Khera N; Ghayor C; Bhattacharya I; Guerrero J; Nicholls F; Waldvogel C; Bärtschi R; Fritschi L; Salamon D; Özcan M; Malgaroli P; Seiler D; de Wild M; Weber FE
    3D Print Addit Manuf; 2023 Oct; 10(5):905-916. PubMed ID: 37886403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-Printed HA-Based Scaffolds for Bone Regeneration: Microporosity, Osteoconduction and Osteoclastic Resorption.
    Ghayor C; Bhattacharya I; Guerrero J; Özcan M; Weber FE
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microporosities in 3D-Printed Tricalcium-Phosphate-Based Bone Substitutes Enhance Osteoconduction and Affect Osteoclastic Resorption.
    Ghayor C; Chen TH; Bhattacharya I; Özcan M; Weber FE
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33291724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can filaments, pellets and powder be used as feedstock to produce highly drug-loaded ethylene-vinyl acetate 3D printed tablets using extrusion-based additive manufacturing?
    Samaro A; Shaqour B; Goudarzi NM; Ghijs M; Cardon L; Boone MN; Verleije B; Beyers K; Vanhoorne V; Cos P; Vervaet C
    Int J Pharm; 2021 Sep; 607():120922. PubMed ID: 34303815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Scaffold Microarchitecture on Angiogenesis and Regulation of Cell Differentiation during the Early Phase of Bone Healing: A Transcriptomics and Histological Analysis.
    Guerrero J; Maevskaia E; Ghayor C; Bhattacharya I; Weber FE
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36983073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TPMS Microarchitectures for Vertical Bone Augmentation and Osteoconduction: An In Vivo Study.
    Maevskaia E; Ghayor C; Bhattacharya I; Guerrero J; Weber FE
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice Microarchitecture for Bone Tissue Engineering from Calcium Phosphate Compared to Titanium.
    Chen TH; Ghayor C; Siegenthaler B; Schuler F; Rüegg J; De Wild M; Weber FE
    Tissue Eng Part A; 2018 Oct; 24(19-20):1554-1561. PubMed ID: 29999466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple and fast method for screening production of polymer-ceramic filaments for bone implant printing using commercial fused deposition modelling 3D printers.
    Podgórski R; Wojasiński M; Trepkowska-Mejer E; Ciach T
    Biomater Adv; 2023 Mar; 146():213317. PubMed ID: 36738523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Review of Natural Fiber-Based Filaments for 3D Printing: Filament Fabrication and Characterization.
    Ahmad MN; Ishak MR; Mohammad Taha M; Mustapha F; Leman Z
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of printing path and material components on mechanical properties of 3D-printed polyether-ether-ketone/hydroxyapatite composites.
    Zheng J; Kang J; Sun C; Yang C; Wang L; Li D
    J Mech Behav Biomed Mater; 2021 Jun; 118():104475. PubMed ID: 33773239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rat Calvarial Bone Regeneration by 3D-Printed β-Tricalcium Phosphate Incorporating MicroRNA-200c.
    Remy MT; Akkouch A; He L; Eliason S; Sweat ME; Krongbaramee T; Fei F; Qian F; Amendt BA; Song X; Hong L
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4521-4534. PubMed ID: 34437807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additive Manufacturing of β-Tricalcium Phosphate Components via Fused Deposition of Ceramics (FDC).
    Esslinger S; Grebhardt A; Jaeger J; Kern F; Killinger A; Bonten C; Gadow R
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration.
    Backes EH; Fernandes EM; Diogo GS; Marques CF; Silva TH; Costa LC; Passador FR; Reis RL; Pessan LA
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111928. PubMed ID: 33641921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production and Characterization of Poly (Lactic Acid)/Nanostructured Carboapatite for 3D Printing of Bioactive Scaffolds for Bone Tissue Engineering.
    Palhares TN; de Menezes LR; Kronemberger GS; Borchio PGM; Baptista LS; Pereira LDCB; da Silva EO
    3D Print Addit Manuf; 2021 Aug; 8(4):227-237. PubMed ID: 36654836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extrusion 3D printing of keratin protein hydrogels free of exogenous chemical agents.
    Brodin E; Boehmer M; Prentice A; Neff E; McCoy K; Mueller J; Saul J; Sparks JL
    Biomed Mater; 2022 Jul; 17(5):. PubMed ID: 35793683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printing Unique Nanoclay-Incorporated Double-Network Hydrogels for Construction of Complex Tissue Engineering Scaffolds.
    Guo Z; Dong L; Xia J; Mi S; Sun W
    Adv Healthc Mater; 2021 Jun; 10(11):e2100036. PubMed ID: 33949152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of Producing Core-Shell Filaments through Fused Filament Fabrication.
    Sover A; Ermolai V; Raichur AM; Ciobanu R; Aradoaei M; Lucanu N
    Polymers (Basel); 2021 Dec; 13(23):. PubMed ID: 34883756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fused Filament Fabrication (Three-Dimensional Printing) of Amorphous Magnesium Phosphate/Polylactic Acid Macroporous Biocomposite Scaffolds.
    Elhattab K; Bhaduri SB; Lawrence JG; Sikder P
    ACS Appl Bio Mater; 2021 Apr; 4(4):3276-3286. PubMed ID: 35014414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and Characterization of PCL/HA Filament as a 3D Printing Material Using Thermal Extrusion Technology for Bone Tissue Engineering.
    Wang F; Tankus EB; Santarella F; Rohr N; Sharma N; Märtin S; Michalscheck M; Maintz M; Cao S; Thieringer FM
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.