These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 36844245)
1. Application of 3D-bioprinted nanocellulose and cellulose derivative-based bio-inks in bone and cartilage tissue engineering. Lin L; Jiang S; Yang J; Qiu J; Jiao X; Yue X; Ke X; Yang G; Zhang L Int J Bioprint; 2023; 9(1):637. PubMed ID: 36844245 [TBL] [Abstract][Full Text] [Related]
2. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Fatimi A; Okoro OV; Podstawczyk D; Siminska-Stanny J; Shavandi A Gels; 2022 Mar; 8(3):. PubMed ID: 35323292 [TBL] [Abstract][Full Text] [Related]
3. 3D Bioprinted Nanocellulose-Based Hydrogels for Tissue Engineering Applications: A Brief Review. Athukoralalage SS; Balu R; Dutta NK; Roy Choudhury N Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31108877 [TBL] [Abstract][Full Text] [Related]
4. Current advancements in bio-ink technology for cartilage and bone tissue engineering. Badhe RV; Chatterjee A; Bijukumar D; Mathew MT Bone; 2023 Jun; 171():116746. PubMed ID: 36965655 [TBL] [Abstract][Full Text] [Related]
5. Three-Dimensional Digital Light-Processing Bioprinting Using Silk Fibroin-Based Bio-Ink: Recent Advancements in Biomedical Applications. Sultan MT; Lee OJ; Lee JS; Park CH Biomedicines; 2022 Dec; 10(12):. PubMed ID: 36551978 [TBL] [Abstract][Full Text] [Related]
6. High-resolution 3D printing of xanthan gum/nanocellulose bio-inks. Baniasadi H; Kimiaei E; Polez RT; Ajdary R; Rojas OJ; Österberg M; Seppälä J Int J Biol Macromol; 2022 Jun; 209(Pt B):2020-2031. PubMed ID: 35500781 [TBL] [Abstract][Full Text] [Related]
7. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996 [TBL] [Abstract][Full Text] [Related]
8. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation. Maturavongsadit P; Narayanan LK; Chansoria P; Shirwaiker R; Benhabbour SR ACS Appl Bio Mater; 2021 Mar; 4(3):2342-2353. PubMed ID: 35014355 [TBL] [Abstract][Full Text] [Related]
9. Nanocellulose-Based Inks for 3D Bioprinting: Key Aspects in Research Development and Challenging Perspectives in Applications-A Mini Review. Wang X; Wang Q; Xu C Bioengineering (Basel); 2020 Apr; 7(2):. PubMed ID: 32365578 [TBL] [Abstract][Full Text] [Related]
10. 3D Bioprinting Technologies for Tissue Engineering Applications. Gu BK; Choi DJ; Park SJ; Kim YJ; Kim CH Adv Exp Med Biol; 2018; 1078():15-28. PubMed ID: 30357616 [TBL] [Abstract][Full Text] [Related]
11. From 3D printing to 3D bioprinting: the material properties of polymeric material and its derived bioink for achieving tissue specific architectures. Vrana NE; Gupta S; Mitra K; Rizvanov AA; Solovyeva VV; Antmen E; Salehi M; Ehterami A; Pourchet L; Barthes J; Marquette CA; von Unge M; Wang CY; Lai PL; Bit A Cell Tissue Bank; 2022 Sep; 23(3):417-440. PubMed ID: 35000046 [TBL] [Abstract][Full Text] [Related]
12. Recent advances in 3D printed cellulose-based wound dressings: A review on in vitro and in vivo achievements. Pita-Vilar M; Concheiro A; Alvarez-Lorenzo C; Diaz-Gomez L Carbohydr Polym; 2023 Dec; 321():121298. PubMed ID: 37739531 [TBL] [Abstract][Full Text] [Related]
13. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications Suntornnond R; Ng WL; Huang X; Yeow CHE; Yeong WY J Mater Chem B; 2022 Aug; 10(31):5989-6000. PubMed ID: 35876487 [TBL] [Abstract][Full Text] [Related]
14. [Research progress of Pei Z; Wang J Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 Apr; 36(4):487-494. PubMed ID: 35426290 [TBL] [Abstract][Full Text] [Related]
15. Advances of Hydrogel-Based Bioprinting for Cartilage Tissue Engineering. Han X; Chang S; Zhang M; Bian X; Li C; Li D Front Bioeng Biotechnol; 2021; 9():746564. PubMed ID: 34660559 [TBL] [Abstract][Full Text] [Related]
16. Imminent antimicrobial bioink deploying cellulose, alginate, EPS and synthetic polymers for 3D bioprinting of tissue constructs. Muthukrishnan L Carbohydr Polym; 2021 May; 260():117774. PubMed ID: 33712131 [TBL] [Abstract][Full Text] [Related]
17. Recent advancements in 3D bioprinting technology of carboxymethyl cellulose-based hydrogels: Utilization in tissue engineering. Mallakpour S; Tukhani M; Hussain CM Adv Colloid Interface Sci; 2021 Jun; 292():102415. PubMed ID: 33892215 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional bio-printing of decellularized extracellular matrix-based bio-inks for cartilage regeneration: a systematic review. Sahranavard M; Sarkari S; Safavi S; Ghorbani F Biomater Transl; 2022; 3(2):105-115. PubMed ID: 36105562 [TBL] [Abstract][Full Text] [Related]
19. Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues. Murab S; Gupta A; Włodarczyk-Biegun MK; Kumar A; van Rijn P; Whitlock P; Han SS; Agrawal G Carbohydr Polym; 2022 Nov; 296():119964. PubMed ID: 36088004 [TBL] [Abstract][Full Text] [Related]
20. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering. Chae S; Cho DW Acta Biomater; 2023 Jan; 156():4-20. PubMed ID: 35963520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]