These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
366 related articles for article (PubMed ID: 36844245)
21. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing. Zhao F; Cheng J; Sun M; Yu H; Wu N; Li Z; Zhang J; Li Q; Yang P; Liu Q; Hu X; Ao Y Biofabrication; 2020 Jul; 12(4):045011. PubMed ID: 32640428 [TBL] [Abstract][Full Text] [Related]
22. Surface Engineered Biomimetic Inks Based on UV Cross-Linkable Wood Biopolymers for 3D Printing. Xu W; Zhang X; Yang P; Långvik O; Wang X; Zhang Y; Cheng F; Österberg M; Willför S; Xu C ACS Appl Mater Interfaces; 2019 Apr; 11(13):12389-12400. PubMed ID: 30844234 [TBL] [Abstract][Full Text] [Related]
23. Nanocomposite bioinks for 3D bioprinting. Cai Y; Chang SY; Gan SW; Ma S; Lu WF; Yen CC Acta Biomater; 2022 Oct; 151():45-69. PubMed ID: 35970479 [TBL] [Abstract][Full Text] [Related]
24. A Mucin-Based Bio-Ink for 3D Printing of Objects with Anti-Biofouling Properties. Rickert CA; Mansi S; Fan D; Mela P; Lieleg O Macromol Biosci; 2023 Nov; 23(11):e2300198. PubMed ID: 37466113 [TBL] [Abstract][Full Text] [Related]
25. Advances in volumetric bioprinting. Jing S; Lian L; Hou Y; Li Z; Zheng Z; Li G; Tang G; Xie G; Xie M Biofabrication; 2023 Nov; 16(1):. PubMed ID: 37922535 [TBL] [Abstract][Full Text] [Related]
26. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
27. Recent Developments in Bio-Ink Formulations Using Marine-Derived Biomaterials for Three-Dimensional (3D) Bioprinting. Khiari Z Mar Drugs; 2024 Mar; 22(3):. PubMed ID: 38535475 [TBL] [Abstract][Full Text] [Related]
28. Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting. Jessop ZM; Al-Sabah A; Gao N; Kyle S; Thomas B; Badiei N; Hawkins K; Whitaker IS Biofabrication; 2019 Jul; 11(4):045006. PubMed ID: 30743252 [TBL] [Abstract][Full Text] [Related]
29. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering. Kumar A; I Matari IA; Han SS Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691 [TBL] [Abstract][Full Text] [Related]
30. Nanocellulosic materials as bioinks for 3D bioprinting. Piras CC; Fernández-Prieto S; De Borggraeve WM Biomater Sci; 2017 Sep; 5(10):1988-1992. PubMed ID: 28829453 [TBL] [Abstract][Full Text] [Related]
31. Chondroitin and Dermatan Sulfate Bioinks for 3D Bioprinting and Cartilage Regeneration. Lafuente-Merchan M; Ruiz-Alonso S; Zabala A; Gálvez-Martín P; Marchal JA; Vázquez-Lasa B; Gallego I; Saenz-Del-Burgo L; Pedraz JL Macromol Biosci; 2022 Mar; 22(3):e2100435. PubMed ID: 35029035 [TBL] [Abstract][Full Text] [Related]
32. Chitosan and Whey Protein Bio-Inks for 3D and 4D Printing Applications with Particular Focus on Food Industry. Yang W; Tu A; Ma Y; Li Z; Xu J; Lin M; Zhang K; Jing L; Fu C; Jiao Y; Huang L Molecules; 2021 Dec; 27(1):. PubMed ID: 35011406 [TBL] [Abstract][Full Text] [Related]
33. Advances in 3D Bioprinting: Techniques, Applications, and Future Directions for Cardiac Tissue Engineering. Wu CA; Zhu Y; Woo YJ Bioengineering (Basel); 2023 Jul; 10(7):. PubMed ID: 37508869 [TBL] [Abstract][Full Text] [Related]
34. Development of a hydrocolloid bio-ink for 3D bioprinting. Yildirim Ö; Arslan-Yildiz A Biomater Sci; 2022 Nov; 10(23):6707-6717. PubMed ID: 36278818 [TBL] [Abstract][Full Text] [Related]
35. 1Biomaterial inks for extrusion-based 3D bioprinting: Property, classification, modification, and selection. Xiaorui L; Fuyin Z; Xudong W; Xuezheng G; Shudong Z; Hui L; Dandan D; Yubing L; Lizhen W; Yubo F Int J Bioprint; 2023; 9(2):649. PubMed ID: 37065674 [TBL] [Abstract][Full Text] [Related]
36. Three-Dimensional Bioprinting and Its Potential in the Field of Articular Cartilage Regeneration. Mouser VHM; Levato R; Bonassar LJ; D'Lima DD; Grande DA; Klein TJ; Saris DBF; Zenobi-Wong M; Gawlitta D; Malda J Cartilage; 2017 Oct; 8(4):327-340. PubMed ID: 28934880 [TBL] [Abstract][Full Text] [Related]
37. Current Advances in 3D Bioprinting Technology and Its Applications for Tissue Engineering. Yu J; Park SA; Kim WD; Ha T; Xin YZ; Lee J; Lee D Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33322291 [TBL] [Abstract][Full Text] [Related]
38. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091 [TBL] [Abstract][Full Text] [Related]
39. Transparent and Cell-Guiding Cellulose Nanofiber 3D Printing Bioinks. Radeke C; Pons R; Mihajlovic M; Knudsen JR; Butdayev S; Kempen PJ; Segeritz CP; Andresen TL; Pehmøller CK; Jensen TE; Lind JU ACS Appl Mater Interfaces; 2023 Jan; 15(2):2564-2577. PubMed ID: 36598781 [TBL] [Abstract][Full Text] [Related]
40. Application of Hydrogels as Three-Dimensional Bioprinting Ink for Tissue Engineering. Xie M; Su J; Zhou S; Li J; Zhang K Gels; 2023 Jan; 9(2):. PubMed ID: 36826258 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]