BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36844506)

  • 41. Mercury sources in a subterranean spontaneous combustion area.
    Li C; Sun J; Shi J; Liang H; Cao Q; Li Z; Gao Y
    Ecotoxicol Environ Saf; 2020 Sep; 201():110863. PubMed ID: 32544749
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic distribution and prevention of spontaneous combustion of coal in gob-side entry retaining goaf.
    Hu D; Li Z
    PLoS One; 2022; 17(5):e0267631. PubMed ID: 35622814
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Study on Multipoint and Zoning Coordinated Prevention of Gas and Coal Spontaneous Combustion in Highly Gassy and Spontaneous Combustion-Prone Coal Seam.
    Zhang C; Jiao D; Zhang M; Huang G
    ACS Omega; 2022 May; 7(20):17305-17329. PubMed ID: 35647430
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characteristics and main factors of foam flow in broken rock mass in coal mine goaf.
    Zhang S; Sun L; Qin B; Wang H; Qi G
    Environ Sci Pollut Res Int; 2022 Jul; 29(31):47095-47108. PubMed ID: 35175523
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A study on the prediction method of coal spontaneous combustion development period based on critical temperature.
    Qu L
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35748-35760. PubMed ID: 30357672
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Continuous monitoring system of gob temperature and its application.
    Qin Y; Yan L; Liu W; Xu H; Song Y; Guo W
    Environ Sci Pollut Res Int; 2022 Jul; 29(35):53063-53075. PubMed ID: 35279753
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermokinetic behaviour and functional group variation during spontaneous combustion of raw coal and its preoxidised form.
    Li DJ; Xiao Y; Lü HF; Laiwang B; Shu CM
    RSC Adv; 2020 Jun; 10(41):24472-24482. PubMed ID: 35516190
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of High Sulfate Mine Water on Spontaneous Combustion of Coal.
    Liu Y; Zhao W; Zhang Y; Wang J; He M; Yang M; Hou X
    ACS Omega; 2022 Dec; 7(50):46347-46357. PubMed ID: 36570196
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vegetation growth status as an early warning indicator for the spontaneous combustion disaster of coal waste dump after reclamation: An unmanned aerial vehicle remote sensing approach.
    Ren H; Zhao Y; Xiao W; Zhang J; Chen C; Ding B; Yang X
    J Environ Manage; 2022 Sep; 317():115502. PubMed ID: 35751291
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigation of adsorption-diffusion behaviors of elementary O
    Liu W; Qi M; Chu X; Peng S; Han D
    Environ Sci Pollut Res Int; 2023 Jul; 30(32):78619-78631. PubMed ID: 37277585
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Experimental investigation on spontaneous combustion oxidation characteristics and stages of coal with different metamorphic degrees.
    Nie B; Yan H; Liu P; Chen Z; Peng C; Wang X; Yin F; Gong J; Wei Y; Lin S; Gao Q; Cao M
    Environ Sci Pollut Res Int; 2023 Jan; 30(3):8269-8279. PubMed ID: 36053423
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of Foam-gel Technique to Control CO Exposure Generated During Spontaneous Combustion of Coal in Coal Mines.
    Ren XW; Wang FZ; Guo Q; Zuo ZB; Fang QS
    J Occup Environ Hyg; 2015; 12(11):D239-45. PubMed ID: 26259722
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimized neural network to predict the experimental minimum period of coal spontaneous combustion.
    Xiao Y; Cao Y; Zhong KQ; Yin L; Deng J
    Environ Sci Pollut Res Int; 2022 Apr; 29(19):28070-28082. PubMed ID: 34984622
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling Test of Combustion Cavity Growth during Underground Coal Gasification in the Early Stage of Ignition.
    Xin L; Wang B; Li J; Niu M; Shang Z; Xu W; Wang X; Li H
    ACS Omega; 2024 Jan; 9(3):3691-3700. PubMed ID: 38284004
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Experimental Study on Spontaneous Combustion Characteristics of Large Coal Particles after Soaking.
    Han G; Dong Z; Zhao L; Zhang Q
    ACS Omega; 2022 Apr; 7(15):13102-13111. PubMed ID: 35474840
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mercury emission from underground coal fires in the mining goaf of the Wuda Coalfield, China.
    Shan B; Wang G; Cao F; Wu D; Liang W; Sun R
    Ecotoxicol Environ Saf; 2019 Oct; 182():109409. PubMed ID: 31288123
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation on preventive inerting approach of coal spontaneous combustion in gob considering adsorption effect.
    Fang X; Tan B; Wang H; Wang F; Shao ZZ; Xu C; Zheng S
    Environ Sci Pollut Res Int; 2023 Nov; 30(52):112892-112907. PubMed ID: 37840082
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic prediction model of spontaneous combustion risk in goaf based on improved CRITIC-G2-TOPSIS method and its application.
    Wang W; Qi Y; Jia B; Yao Y
    PLoS One; 2021; 16(10):e0257499. PubMed ID: 34705831
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of Water Evaporation on the Inhibition of Spontaneous Coal Combustion.
    Han Q; Cui C; Jiang S; Deng C; Jin Z
    ACS Omega; 2022 Mar; 7(8):6824-6833. PubMed ID: 35252676
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative study on the inhibiting effect of dissolvable tiny-foam extinguishing agent and chlorine salts on coal spontaneous combustion.
    Zhai X; Zhou Y; Song B; Pan W; Wang J
    Environ Sci Pollut Res Int; 2023 Jul; 30(33):80591-80601. PubMed ID: 37296254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.