These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36844585)

  • 1. Development of Gelatin-Based Shape-Memory Polymer Scaffolds with Fast Responsive Performance and Enhanced Mechanical Properties for Tissue Engineering Applications.
    Kim NE; Park S; Kim S; Choi JH; Kim SE; Choe SH; Kang TW; Song JE; Khang G
    ACS Omega; 2023 Feb; 8(7):6455-6462. PubMed ID: 36844585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable Water-Based Polyurethane Shape Memory Elastomers for Bone Tissue Engineering.
    Wang YJ; Jeng US; Hsu SH
    ACS Biomater Sci Eng; 2018 Apr; 4(4):1397-1406. PubMed ID: 33418669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast and Programmable Shape Memory Hydrogel of Gelatin Soaked in Tannic Acid Solution.
    Yang S; Zhang Y; Wang T; Sun W; Tong Z
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46701-46709. PubMed ID: 32960035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications.
    Xia Y; He Y; Zhang F; Liu Y; Leng J
    Adv Mater; 2021 Feb; 33(6):e2000713. PubMed ID: 32969090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fused Deposition Modeling and Characterization of Heat Shape Memory Poly(lactic) Acid-Based Porous Vascular Scaffold.
    Zhang L; Hanif M; Li J; Shah AH; Hussain W; Zhang G
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.
    Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ
    Acta Biomater; 2015 Sep; 24():53-63. PubMed ID: 26072363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.
    Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ
    Acta Biomater; 2016 Apr; 34():73-83. PubMed ID: 27018333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biofunctionalized chondrogenic shape-memory ternary scaffolds for efficient cell-free cartilage regeneration.
    Xuan H; Hu H; Geng C; Song J; Shen Y; Lei D; Guan Q; Zhao S; You Z
    Acta Biomater; 2020 Mar; 105():97-110. PubMed ID: 31953195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering.
    Bao M; Lou X; Zhou Q; Dong W; Yuan H; Zhang Y
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2611-21. PubMed ID: 24476093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of shape memory polymer scaffolds via solvent casting/particulate leaching.
    De Nardo L; Bertoldi S; Cigada A; Tanzi MC; Haugen HJ; Farè S
    J Appl Biomater Funct Mater; 2012 Sep; 10(2):119-26. PubMed ID: 23015372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape Recovery with Concomitant Mechanical Strengthening of Amphiphilic Shape Memory Polymers in Warm Water.
    Zhang B; DeBartolo JE; Song J
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4450-4456. PubMed ID: 28125208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High performance shape memory polymer networks based on rigid nanoparticle cores.
    Xu J; Song J
    Proc Natl Acad Sci U S A; 2010 Apr; 107(17):7652-7. PubMed ID: 20375285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.
    Miao S; Zhu W; Castro NJ; Leng J; Zhang LG
    Tissue Eng Part C Methods; 2016 Oct; 22(10):952-963. PubMed ID: 28195832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape memory materials promoting cell adhesion and tissue invasion towards the applications requiring minimally invasive implantation.
    Wang W; Zhao J; Li C; Pang Q
    J Biomater Sci Polym Ed; 2020 Oct; 31(14):1820-1835. PubMed ID: 32567531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo tissue responses to thermal-responsive shape memory polymer nanocomposites.
    Filion TM; Xu J; Prasad ML; Song J
    Biomaterials; 2011 Feb; 32(4):985-91. PubMed ID: 21040968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid shape memory TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin hydrogels with enhanced mechanical strength.
    Li N; Chen W; Chen G; Tian J
    Carbohydr Polym; 2017 Sep; 171():77-84. PubMed ID: 28578973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Chemical Composition on the Shape Memory Property of Poly(dl-lactide-
    Han L; Wang Y; Wu L; Wu Z; He Y; Mao H; Gu Z
    ACS Biomater Sci Eng; 2023 Jan; 9(1):520-530. PubMed ID: 36459430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication, characterization, and optimization of a novel copper-incorporated chitosan/gelatin-based scaffold for bone tissue engineering applications.
    Bozorgi A; Mozafari M; Khazaei M; Soleimani M; Jamalpoor Z
    Bioimpacts; 2022; 12(3):233-246. PubMed ID: 35677664
    [No Abstract]   [Full Text] [Related]  

  • 20. Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers.
    Pisani S; Genta I; Modena T; Dorati R; Benazzo M; Conti B
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.