BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36844588)

  • 1. Changing Hydrocarbon-Producing Potential of the Cambrian Niutitang Shale: Insights from Pyrite Morphology and Geochemical Characteristics.
    Wang X; Zhang J; Shi M; Pang Y; Zhao Y; Yang X
    ACS Omega; 2023 Feb; 8(7):7172-7190. PubMed ID: 36844588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genesis and Distribution of Pyrite in the Lacustrine Shale: Evidence from the Es3x Shale of the Eocene Shahejie Formation, Zhanhua Sag, East China.
    Khan D; Qiu L; Liang C; Mirza K; Rehman SU; Han Y; Hannan A; Kashif M; Kra KL
    ACS Omega; 2022 Jan; 7(1):1244-1258. PubMed ID: 35036786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrite Characteristics in Lacustrine Shale and Implications for Organic Matter Enrichment and Shale Oil: A Case Study from the Triassic Yanchang Formation in the Ordos Basin, NW China.
    Zhou Q; Liu J; Ma B; Li C; Xiao Y; Chen G; Lyu C
    ACS Omega; 2024 Apr; 9(14):16519-16535. PubMed ID: 38617621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geochemical and isotopic evidence for paleoredox conditions during deposition of the Devonian-Mississippian New Albany Shale, southern Indiana.
    Beier JA; Hayes JM
    Geol Soc Am Bull; 1989 Jun; 101():774-82. PubMed ID: 11542199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Angle Investigation of the Fractal Characteristics of Nanoscale Pores in the Lower Cambrian Niutitang Shale and Their Implications for CH₄ Adsorption.
    Wang Y; Wu C; Qin Y; Liu S; Zhang R
    J Nanosci Nanotechnol; 2021 Jan; 21(1):156-167. PubMed ID: 33213620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling Factors and Formation Models of Organic Matter Accumulation for the Upper Permian Dalong Formation Black Shale in the Lower Yangtze Region, South China: Constraints from Geochemical Evidence.
    Ding J; Zhang J; Huo Z; Shen B; Shi G; Yang Z; Li X; Li C
    ACS Omega; 2021 Feb; 6(5):3681-3692. PubMed ID: 33585748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of Developmental Characteristics and Dominant Factors of Pore-Fracture Systems in Lower Cambrian Marine Shale Reservoirs: A Case Study of the Niutitang Formation, Fenggang Block, Southern China.
    Shang FH; Zhu YM; Gao HT; Wang Y; Liu RY; Meng XW
    J Nanosci Nanotechnol; 2021 Jan; 21(1):57-71. PubMed ID: 33213613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical and Geological Properties of Shale Gas: In Situ Desorption of Lower Cambrian Niutitang Shale in the Micangshan Tectonic Zone of South Shaanxi, China.
    Zhang X; Shen B; Tian T; Li S; Xu X; Yang J; Sun W; Qin J
    ACS Omega; 2024 Mar; 9(12):13764-13781. PubMed ID: 38559952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paleoenvironment Evolutionary Characteristics of Niutitang Shale in Western Hubei, Middle Yangtze, China.
    Xu L; Huang S; Liu Z; Zhang Y; Wen Y; Zhou X; Chen W; Ren Z; Wen J
    ACS Omega; 2022 Jul; 7(28):24365-24383. PubMed ID: 35874201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sedimentation Models and Development Mechanisms of Organic-Rich Shales of the Lower Carboniferous Dawuba Formation: A Case Study in the Yaziluo Rift Trough, South of Guizhou Province, Southern China.
    Zheng F; Tang X; Yuan K; Lin T; You M; Niu J; Zi Y; Liang Y
    ACS Omega; 2022 Aug; 7(33):29054-29071. PubMed ID: 36033673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing the Climatic-Oceanic Environment and Exploring the Enrichment Mechanism of Organic Matter in the Black Shale across the Late Ordovician-Early Silurian Transition on the Upper Yangtze Platform Using Geochemical Proxies.
    Wei Z; Wang Y; Wang G; Zhang T; He W; Ma X
    ACS Omega; 2020 Oct; 5(42):27442-27454. PubMed ID: 33134707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Pyrite Oxidation on the Pore-Structure Characteristics of Shale Reservoir Rocks under the Interaction of Fracturing Fluid.
    Sun Z; Ni Y; Wu Y; Lei Y
    ACS Omega; 2022 Aug; 7(30):26549-26559. PubMed ID: 35936473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Source of arsenic-bearing pyrite in southwestern Vermont, USA: sulfur isotope evidence.
    Mango H; Ryan P
    Sci Total Environ; 2015 Feb; 505():1331-9. PubMed ID: 24726513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors Controlling the Lower Radioactivity and Its Relation with Higher Organic Matter Content for Middle Jurassic Oil Shale in Yuqia Depression, Northern Qaidam Basin, China: Evidence from Organic and Inorganic Geochemistry.
    Guo W; Chen G; Li Y; Li Y; Zhang Y; Zhou J; Han W; Xu X; Ma Y; Dang H
    ACS Omega; 2021 Mar; 6(11):7360-7373. PubMed ID: 33778249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ trace metal analysis of Neoarchaean--Ordovician shallow-marine microbial-carbonate-hosted pyrites.
    Gallagher M; Turner EC; Kamber BS
    Geobiology; 2015 Jul; 13(4):316-39. PubMed ID: 25917609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rare Earth Element Characteristics of Shales from Wufeng-Longmaxi Formations in Deep-Buried Areas of the Northern Sichuan Basin, Southern China: Implications for Provenance, Depositional Conditions, and Paleoclimate.
    Xiao B; Guo D; Li S; Xiong S; Jing Z; Feng M; Fu X; Zhao Z
    ACS Omega; 2024 Jan; 9(2):2088-2103. PubMed ID: 38250373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Paleo-marine redox environment fluctuation during the early Cambrian: Insight from iron isotope in the Tarim Basin, China.
    Ai Y; Zhu G; Li T; Zhang Z; Zhang Y; Duan P; Liu J; Zhao K; Li X
    Sci Total Environ; 2024 Feb; 912():169277. PubMed ID: 38110098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon and sulfur isotopic signatures of ancient life and environment at the microbial scale: Neoarchean shales and carbonates.
    Williford KH; Ushikubo T; Lepot K; Kitajima K; Hallmann C; Spicuzza MJ; Kozdon R; Eigenbrode JL; Summons RE; Valley JW
    Geobiology; 2016 Mar; 14(2):105-28. PubMed ID: 26498593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sedimentary pyrite sulfur isotope compositions preserve signatures of the surface microbial mat environment in sediments underlying low-oxygen cyanobacterial mats.
    Gomes ML; Klatt JM; Dick GJ; Grim SL; Rico KI; Medina M; Ziebis W; Kinsman-Costello L; Sheldon ND; Fike DA
    Geobiology; 2022 Jan; 20(1):60-78. PubMed ID: 34331395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constraints of Sedimentary Environment on Shale Organic Matter Enrichment: Insights from Elemental Geochemistry and Multiple Factor Analysis.
    Shao X; Xu P; Jiang Z; Song Y; Yang Y; Wang D
    ACS Omega; 2024 Apr; 9(14):15915-15934. PubMed ID: 38617680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.