These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36844890)

  • 21. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows.
    Premnath KN; Pattison MJ; Banerjee S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026703. PubMed ID: 19391870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Particle image velocimetry of a flow at a vaulted wall.
    Kertzscher U; Berthe A; Goubergrits L; Affeld K
    Proc Inst Mech Eng H; 2008 May; 222(4):465-73. PubMed ID: 18595358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic slip wall model for large-eddy simulation.
    Bae HJ; Lozano-Durán A; Bose ST; Moin P
    J Fluid Mech; 2019 Jan; 859():400-432. PubMed ID: 31631905
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Particle Image Velocimetry (PIV) Investigation of the Turbulent Airflow in Slot-Die Melt Blowing.
    Xie S; Jiang G; Ye B; Shentu B
    Polymers (Basel); 2020 Jan; 12(2):. PubMed ID: 32023960
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SPH modelling of depth-limited turbulent open channel flows over rough boundaries.
    Kazemi E; Nichols A; Tait S; Shao S
    Int J Numer Methods Fluids; 2017 Jan; 83(1):3-27. PubMed ID: 28066121
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regularized tomographic PIV for incompressible flows based on conservation of mass.
    Liu N; Ma L
    Appl Opt; 2020 Feb; 59(6):1667-1677. PubMed ID: 32225672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mangrove roots model suggest an optimal porosity to prevent erosion.
    Kazemi A; Castillo L; Curet OM
    Sci Rep; 2021 May; 11(1):9969. PubMed ID: 33976300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristic length scale of the intermediate structure in zero-pressure-gradient boundary layer flow.
    Barenblatt GI; Chorin AJ; Prostokishin VM
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):3799-802. PubMed ID: 10760253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry.
    Taylor JO; Good BC; Paterno AV; Hariharan P; Deutsch S; Malinauskas RA; Manning KB
    Cardiovasc Eng Technol; 2016 Sep; 7(3):191-209. PubMed ID: 27350137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Orthogonal wavelet multiresolution analysis of the turbulent boundary layer measured with two-dimensional time-resolved particle image velocimetry.
    He G; Wang J; Rinoshika A
    Phys Rev E; 2019 May; 99(5-1):053105. PubMed ID: 31212518
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An experimental study of the wall-pressure fluctuations beneath low Reynolds number turbulent boundary layers.
    Van Blitterswyk J; Rocha J
    J Acoust Soc Am; 2017 Feb; 141(2):1257. PubMed ID: 28253673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern.
    Kheradvar A; Houle H; Pedrizzetti G; Tonti G; Belcik T; Ashraf M; Lindner JR; Gharib M; Sahn D
    J Am Soc Echocardiogr; 2010 Jan; 23(1):86-94. PubMed ID: 19836203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional multiscale flow structures behind a wall-mounted short cylinder based on tomographic particle image velocimetry and three-dimensional orthogonal wavelet transform.
    Rinoshika H; Rinoshika A; Wang JJ
    Phys Rev E; 2020 Sep; 102(3-1):033101. PubMed ID: 33075884
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous Measurement of Turbulence and Particle Kinematics Using Flow Imaging Techniques.
    Hackett EE; Gurka R
    J Vis Exp; 2019 Mar; (145):. PubMed ID: 30933053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-time interval method to circumvent particle image velocimetry dynamic range.
    Bharadwaj SV; Vybhav GR
    MethodsX; 2022; 9():101725. PubMed ID: 35620761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Attached flow structure and streamwise energy spectra in a turbulent boundary layer.
    Srinath S; Vassilicos JC; Cuvier C; Laval JP; Stanislas M; Foucaut JM
    Phys Rev E; 2018 May; 97(5-1):053103. PubMed ID: 29906981
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identity of attached eddies in turbulent channel flows with bidimensional empirical mode decomposition.
    Cheng C; Li W; Lozano-Durán A; Liu H
    J Fluid Mech; 2019 Jul; 870():1037-1071. PubMed ID: 31631907
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Echo Particle Image Velocimetry for Estimation of Carotid Artery Wall Shear Stress: Repeatability, Reproducibility and Comparison with Phase-Contrast Magnetic Resonance Imaging.
    Gurung A; Gates PE; Mazzaro L; Fulford J; Zhang F; Barker AJ; Hertzberg J; Aizawa K; Strain WD; Elyas S; Shore AC; Shandas R
    Ultrasound Med Biol; 2017 Aug; 43(8):1618-1627. PubMed ID: 28501327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of Wall Shear Stress Exerted by Flowing Blood in the Human Carotid Artery: Ultrasound Doppler Velocimetry and Echo Particle Image Velocimetry.
    Gates PE; Gurung A; Mazzaro L; Aizawa K; Elyas S; Strain WD; Shore AC; Shandas R
    Ultrasound Med Biol; 2018 Jul; 44(7):1392-1401. PubMed ID: 29678322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An experimental/numerical investigation of non-reacting turbulent flow in a piloted premixed Bunsen burner.
    Pareja J; Lipkowicz T; Inanc E; Carter CD; Kempf A; Boxx I
    Exp Fluids; 2022; 63(1):33. PubMed ID: 35125637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.