BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 36844916)

  • 21. ReplaceNet: real-time replacement of a biological neural circuit with a hardware-assisted spiking neural network.
    Hwang S; Hwang Y; Kim D; Lee J; Choe HK; Lee J; Kang H; Kung J
    Front Neurosci; 2023; 17():1161592. PubMed ID: 37638314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An efficient simulation environment for modeling large-scale cortical processing.
    Richert M; Nageswaran JM; Dutt N; Krichmar JL
    Front Neuroinform; 2011; 5():19. PubMed ID: 22007166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.
    Beyeler M; Dutt ND; Krichmar JL
    Neural Netw; 2013 Dec; 48():109-24. PubMed ID: 23994510
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An FPGA Implementation of Deep Spiking Neural Networks for Low-Power and Fast Classification.
    Ju X; Fang B; Yan R; Xu X; Tang H
    Neural Comput; 2020 Jan; 32(1):182-204. PubMed ID: 31703174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brian2GeNN: accelerating spiking neural network simulations with graphics hardware.
    Stimberg M; Goodman DFM; Nowotny T
    Sci Rep; 2020 Jan; 10(1):410. PubMed ID: 31941893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brian2CUDA: Flexible and Efficient Simulation of Spiking Neural Network Models on GPUs.
    Alevi D; Stimberg M; Sprekeler H; Obermayer K; Augustin M
    Front Neuroinform; 2022; 16():883700. PubMed ID: 36387586
    [TBL] [Abstract][Full Text] [Related]  

  • 27. FNS allows efficient event-driven spiking neural network simulations based on a neuron model supporting spike latency.
    Susi G; GarcĂ©s P; Paracone E; Cristini A; Salerno M; MaestĂș F; Pereda E
    Sci Rep; 2021 Jun; 11(1):12160. PubMed ID: 34108523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synapse-Centric Mapping of Cortical Models to the SpiNNaker Neuromorphic Architecture.
    Knight JC; Furber SB
    Front Neurosci; 2016; 10():420. PubMed ID: 27683540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supercomputers ready for use as discovery machines for neuroscience.
    Helias M; Kunkel S; Masumoto G; Igarashi J; Eppler JM; Ishii S; Fukai T; Morrison A; Diesmann M
    Front Neuroinform; 2012; 6():26. PubMed ID: 23129998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices.
    Kwon D; Lim S; Bae JH; Lee ST; Kim H; Seo YT; Oh S; Kim J; Yeom K; Park BG; Lee JH
    Front Neurosci; 2020; 14():423. PubMed ID: 32733180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An FPGA-Based Massively Parallel Neuromorphic Cortex Simulator.
    Wang RM; Thakur CS; van Schaik A
    Front Neurosci; 2018; 12():213. PubMed ID: 29692702
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating visual navigation using spiking neural network models of the insect mushroom bodies.
    Jesusanmi OO; Amin AA; Domcsek N; Knight JC; Philippides A; Nowotny T; Graham P
    Front Physiol; 2024; 15():1379977. PubMed ID: 38841209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware.
    Zou C; Cui X; Kuang Y; Liu K; Wang Y; Wang X; Huang R
    Front Neurosci; 2021; 15():694170. PubMed ID: 34867142
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large-Scale Simulation of a Layered Cortical Sheet of Spiking Network Model Using a Tile Partitioning Method.
    Igarashi J; Yamaura H; Yamazaki T
    Front Neuroinform; 2019; 13():71. PubMed ID: 31849631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient spiking neural network model of pattern motion selectivity in visual cortex.
    Beyeler M; Richert M; Dutt ND; Krichmar JL
    Neuroinformatics; 2014 Jul; 12(3):435-54. PubMed ID: 24497233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scalable Digital Neuromorphic Architecture for Large-Scale Biophysically Meaningful Neural Network With Multi-Compartment Neurons.
    Yang S; Deng B; Wang J; Li H; Lu M; Che Y; Wei X; Loparo KA
    IEEE Trans Neural Netw Learn Syst; 2020 Jan; 31(1):148-162. PubMed ID: 30892250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GeNN: a code generation framework for accelerated brain simulations.
    Yavuz E; Turner J; Nowotny T
    Sci Rep; 2016 Jan; 6():18854. PubMed ID: 26740369
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SNS-Toolbox: An Open Source Tool for Designing Synthetic Nervous Systems and Interfacing Them with Cyber-Physical Systems.
    Nourse WRP; Jackson C; Szczecinski NS; Quinn RD
    Biomimetics (Basel); 2023 Jun; 8(2):. PubMed ID: 37366842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photonic spiking neural networks with event-driven femtojoule optoelectronic neurons based on Izhikevich-inspired model.
    Lee YJ; On MB; Xiao X; Proietti R; Yoo SJB
    Opt Express; 2022 May; 30(11):19360-19389. PubMed ID: 36221716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SpykeTorch: Efficient Simulation of Convolutional Spiking Neural Networks With at Most One Spike per Neuron.
    Mozafari M; Ganjtabesh M; Nowzari-Dalini A; Masquelier T
    Front Neurosci; 2019; 13():625. PubMed ID: 31354403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.