These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 36845190)
1. Biomechanical evaluation of a novel intervertebral disc repair technique for large box-shaped ruptures. Nie MD; Huang ZB; Zhang NZ; Fu LJ; Cheng CK Front Bioeng Biotechnol; 2023; 11():1104015. PubMed ID: 36845190 [No Abstract] [Full Text] [Related]
2. Innovative hydrogel-patch combination for large annulus fibrosus defects: a prospective approach to address herniation recurrence. Nie MD; Li N; Huang ZB; Cheng RS; Zhang Q; Fu LJ; Cheng CK Spine J; 2024 Oct; 24(10):2002-2012. PubMed ID: 38914373 [TBL] [Abstract][Full Text] [Related]
3. Intervertebral disc swelling maintains strain homeostasis throughout the annulus fibrosus: A finite element analysis of healthy and degenerated discs. Yang B; O'Connell GD Acta Biomater; 2019 Dec; 100():61-74. PubMed ID: 31568880 [TBL] [Abstract][Full Text] [Related]
4. Numerical analysis of the influence of nucleus pulposus removal on the biomechanical behavior of a lumbar motion segment. Huang J; Yan H; Jian F; Wang X; Li H Comput Methods Biomech Biomed Engin; 2015; 18(14):1516-24. PubMed ID: 24893132 [TBL] [Abstract][Full Text] [Related]
5. Closure of the annulus fibrosus of the intervertebral disc using a novel suture application device-in vivo porcine and ex vivo biomechanical evaluation. Bateman AH; Balkovec C; Akens MK; Chan AH; Harrison RD; Oakden W; Yee AJ; McGill SM Spine J; 2016 Jul; 16(7):889-95. PubMed ID: 26972621 [TBL] [Abstract][Full Text] [Related]
6. Initial investigation of individual and combined annulus fibrosus and nucleus pulposus repair ex vivo. Sloan SR; Galesso D; Secchieri C; Berlin C; Hartl R; Bonassar LJ Acta Biomater; 2017 Sep; 59():192-199. PubMed ID: 28669721 [TBL] [Abstract][Full Text] [Related]
7. Impact of material properties of intervertebral disc on dynamic response of the human lumbar spine to vertical vibration: a finite element sensitivity study. Guo LX; Fan W Med Biol Eng Comput; 2019 Jan; 57(1):221-229. PubMed ID: 30083805 [TBL] [Abstract][Full Text] [Related]
8. Effect of cervical spine motion on displacement of posterolateral annulus fibrosus in cervical spondylotic radiculopathy with contained posterolateral disc herniation: a three-dimensional finite element analysis. Ye LQ; Chen C; Liu YH; Li Z; Lu GL J Orthop Surg Res; 2022 Dec; 17(1):548. PubMed ID: 36528646 [TBL] [Abstract][Full Text] [Related]
9. Optimal intervertebral sealant properties for the lumbar spinal disc: a finite-element study. Holekamp S; Goel V; Kuroki H; Huntzinger J; Ebraheim N SAS J; 2007; 1(2):68-73. PubMed ID: 25802581 [TBL] [Abstract][Full Text] [Related]
11. Shape and Size of the Annulus Fibrosus Excision Alters the Biomechanics of the Intervertebral Disc. Nie MD; Huang ZB; Cheng RS; Zhang Q; Zhang JP; Fu LJ; Cheng CK Global Spine J; 2024 Jul; ():21925682241270090. PubMed ID: 39078998 [TBL] [Abstract][Full Text] [Related]
12. Effect of Spiral Nucleus Implant Parameters on the Compressive Biomechanics of Lumbar Intervertebral Disc. Du CF; Liu CJ; Huang YP; Wang X World Neurosurg; 2020 Feb; 134():e878-e884. PubMed ID: 31733385 [TBL] [Abstract][Full Text] [Related]
13. Low energy extracorporeal shock wave therapy combined with low tension traction can better reshape the microenvironment in degenerated intervertebral disc regeneration and repair. Che YJ; Hou JJ; Guo JB; Liang T; Zhang W; Lu Y; Yang HL; Hao YF; Luo ZP Spine J; 2021 Jan; 21(1):160-177. PubMed ID: 32800896 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical Effect of L Cai XY; Sun MS; Huang YP; Liu ZX; Liu CJ; Du CF; Yang Q Orthop Surg; 2020 Jun; 12(3):917-930. PubMed ID: 32476282 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical effect of age-related structural changes on cervical intervertebral disc: A finite element study. Zeng HZ; Zheng LD; Xu ML; Zhu SJ; Zhou L; Candito A; Wu T; Zhu R; Chen Y Proc Inst Mech Eng H; 2022 Oct; 236(10):1541-1551. PubMed ID: 36239382 [TBL] [Abstract][Full Text] [Related]
16. The effect of nucleotomy and the dependence of degeneration of human intervertebral disc strain in axial compression. O'Connell GD; Malhotra NR; Vresilovic EJ; Elliott DM Spine (Phila Pa 1976); 2011 Oct; 36(21):1765-71. PubMed ID: 21394074 [TBL] [Abstract][Full Text] [Related]
17. Influence of structural and material property uncertainties on biomechanics of intervertebral discs - Implications for disc tissue engineering. Wang W; Zhou C; Guo R; Cha T; Li G J Mech Behav Biomed Mater; 2021 Oct; 122():104661. PubMed ID: 34252706 [TBL] [Abstract][Full Text] [Related]
18. Role of biomechanics in intervertebral disc degeneration and regenerative therapies: what needs repairing in the disc and what are promising biomaterials for its repair? Iatridis JC; Nicoll SB; Michalek AJ; Walter BA; Gupta MS Spine J; 2013 Mar; 13(3):243-62. PubMed ID: 23369494 [TBL] [Abstract][Full Text] [Related]
19. Total disc replacement using a tissue-engineered intervertebral disc in vivo: new animal model and initial results. Gebhard H; Bowles R; Dyke J; Saleh T; Doty S; Bonassar L; Härtl R Evid Based Spine Care J; 2010 Aug; 1(2):62-6. PubMed ID: 23637671 [TBL] [Abstract][Full Text] [Related]
20. Elastic, permeability and swelling properties of human intervertebral disc tissues: A benchmark for tissue engineering. Cortes DH; Jacobs NT; DeLucca JF; Elliott DM J Biomech; 2014 Jun; 47(9):2088-94. PubMed ID: 24438768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]