BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36845193)

  • 1. A novel balance training approach: Biomechanical study of virtual reality-based skateboarding.
    Kantha P; Hsu WL; Chen PJ; Tsai YC; Lin JJ
    Front Bioeng Biotechnol; 2023; 11():1136368. PubMed ID: 36845193
    [No Abstract]   [Full Text] [Related]  

  • 2. Virtual reality skateboarding training for balance and functional performance in degenerative lumbar spine disease.
    Tsai YC; Hsu WL; Kantha P; Chen PJ; Lai DM
    J Neuroeng Rehabil; 2024 May; 21(1):74. PubMed ID: 38724981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke.
    Winter C; Kern F; Gall D; Latoschik ME; Pauli P; Käthner I
    J Neuroeng Rehabil; 2021 Apr; 18(1):68. PubMed ID: 33888148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual Reality-guided, Dual-task, Body Trunk Balance Training in the Sitting Position Improved Walking Ability without Improving Leg Strength.
    Omon K; Hara M; Ishikawa H
    Prog Rehabil Med; 2019; 4():20190011. PubMed ID: 32789258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of speed adaptation while walking on an omnidirectional treadmill.
    Soni S; Lamontagne A
    J Neuroeng Rehabil; 2020 Nov; 17(1):153. PubMed ID: 33228761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Walking with head-mounted virtual and augmented reality devices: Effects on position control and gait biomechanics.
    Chan ZYS; MacPhail AJC; Au IPH; Zhang JH; Lam BMF; Ferber R; Cheung RTH
    PLoS One; 2019; 14(12):e0225972. PubMed ID: 31800637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical Evaluation of Virtual Reality-based Turning on a Self-Paced Linear Treadmill.
    Oh K; Stanley CJ; Damiano DL; Kim J; Yoon J; Park HS
    Gait Posture; 2018 Sep; 65():157-162. PubMed ID: 30510358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The center of pressure position in combination with ankle dorsiflexion and trunk flexion is useful in predicting the contribution of the knee extensor moment during double-leg squatting.
    Ishida T; Samukawa M; Kasahara S; Tohyama H
    BMC Sports Sci Med Rehabil; 2022 Jul; 14(1):127. PubMed ID: 35836275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual reality doorway and hallway environments alter gait kinematics in people with Parkinson disease and freezing.
    Besharat A; Imsdahl SI; Yamagami M; Nhan N; Bellatin O; Burden SA; Cummer K; Pradhan SD; Kelly VE
    Gait Posture; 2022 Feb; 92():442-448. PubMed ID: 34996008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overground Walking in a Fully Immersive Virtual Reality: A Comprehensive Study on the Effects on Full-Body Walking Biomechanics.
    Horsak B; Simonlehner M; Schöffer L; Dumphart B; Jalaeefar A; Husinsky M
    Front Bioeng Biotechnol; 2021; 9():780314. PubMed ID: 34957075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of adding a virtual reality environment to different modes of treadmill walking.
    Sloot LH; van der Krogt MM; Harlaar J
    Gait Posture; 2014 Mar; 39(3):939-45. PubMed ID: 24412269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Outdoor walking exhibits peak ankle and knee flexion differences compared to fixed and adaptive-speed treadmills in older adults.
    Parker SM; Crenshaw J; Hunt NH; Burcal C; Knarr BA
    Biomed Eng Online; 2021 Oct; 20(1):104. PubMed ID: 34654416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait Characteristics of Children with Spastic Cerebral Palsy during Inclined Treadmill Walking under a Virtual Reality Environment.
    Ma Y; Liang Y; Kang X; Shao M; Siemelink L; Zhang Y
    Appl Bionics Biomech; 2019; 2019():8049156. PubMed ID: 31531126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of a Virtual Reality Cycling Platform on Lower Limb Rehabilitation in Patients With Ataxia and Hemiparesis: Pilot Randomized Controlled Trial.
    Rojo A; Castrillo Calvillo A; López C; Raya R; Moreno JC
    JMIR Serious Games; 2024 Jan; 12():e39286. PubMed ID: 38180843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Virtual reality exercise programs ameliorate frailty and fall risks in older adults: A meta-analysis.
    Lee YH; Lin CH; Wu WR; Chiu HY; Huang HC
    J Am Geriatr Soc; 2023 Sep; 71(9):2946-2955. PubMed ID: 37165743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual reality-based balance training system augmented with operant conditioning paradigm.
    Kumar D; Sinha N; Dutta A; Lahiri U
    Biomed Eng Online; 2019 Aug; 18(1):90. PubMed ID: 31455355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experiences of Stroke Survivors and Clinicians With a Fully Immersive Virtual Reality Treadmill Exergame for Stroke Rehabilitation: A Qualitative Pilot Study.
    Moan ME; Vonstad EK; Su X; Vereijken B; Solbjør M; Skjæret-Maroni N
    Front Aging Neurosci; 2021; 13():735251. PubMed ID: 34795576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait training with virtual reality-based real-time feedback: improving gait performance following transfemoral amputation.
    Darter BJ; Wilken JM
    Phys Ther; 2011 Sep; 91(9):1385-94. PubMed ID: 21757579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological Gait versus Gait in VR on Multidirectional Treadmill-Comparative Analysis.
    Jochymczyk-Woźniak K; Nowakowska K; Polechoński J; Sładczyk S; Michnik R
    Medicina (Kaunas); 2019 Aug; 55(9):. PubMed ID: 31443382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.