These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 36845202)
1. Pancancer survival prediction using a deep learning architecture with multimodal representation and integration. Fan Z; Jiang Z; Liang H; Han C Bioinform Adv; 2023; 3(1):vbad006. PubMed ID: 36845202 [TBL] [Abstract][Full Text] [Related]
2. Deep learning with multimodal representation for pancancer prognosis prediction. Cheerla A; Gevaert O Bioinformatics; 2019 Jul; 35(14):i446-i454. PubMed ID: 31510656 [TBL] [Abstract][Full Text] [Related]
3. CAMR: cross-aligned multimodal representation learning for cancer survival prediction. Wu X; Shi Y; Wang M; Li A Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36637188 [TBL] [Abstract][Full Text] [Related]
4. Enhancing the prediction of disease-gene associations with multimodal deep learning. Luo P; Li Y; Tian LP; Wu FX Bioinformatics; 2019 Oct; 35(19):3735-3742. PubMed ID: 30825303 [TBL] [Abstract][Full Text] [Related]
5. MOLI: multi-omics late integration with deep neural networks for drug response prediction. Sharifi-Noghabi H; Zolotareva O; Collins CC; Ester M Bioinformatics; 2019 Jul; 35(14):i501-i509. PubMed ID: 31510700 [TBL] [Abstract][Full Text] [Related]
6. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning. Li Y; Guo Z; Gao X; Wang G Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38070154 [TBL] [Abstract][Full Text] [Related]
7. FGCNSurv: dually fused graph convolutional network for multi-omics survival prediction. Wen G; Li L Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37522887 [TBL] [Abstract][Full Text] [Related]
8. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis. Tong L; Mitchel J; Chatlin K; Wang MD BMC Med Inform Decis Mak; 2020 Sep; 20(1):225. PubMed ID: 32933515 [TBL] [Abstract][Full Text] [Related]
9. Tightly integrated multiomics-based deep tensor survival model for time-to-event prediction. Zhang JZ; Xu W; Hu P Bioinformatics; 2022 Jun; 38(12):3259-3266. PubMed ID: 35445698 [TBL] [Abstract][Full Text] [Related]
10. Multi-omics data integration by generative adversarial network. Ahmed KT; Sun J; Cheng S; Yong J; Zhang W Bioinformatics; 2021 Dec; 38(1):179-186. PubMed ID: 34415323 [TBL] [Abstract][Full Text] [Related]
11. Deep multi-omics integration by learning correlation-maximizing representation identifies prognostically stratified cancer subtypes. Ji Y; Dutta P; Davuluri R Bioinform Adv; 2023; 3(1):vbad075. PubMed ID: 37424943 [TBL] [Abstract][Full Text] [Related]
12. Toward attention-based learning to predict the risk of brain degeneration with multimodal medical data. Sun X; Guo W; Shen J Front Neurosci; 2022; 16():1043626. PubMed ID: 36741058 [TBL] [Abstract][Full Text] [Related]
13. A cross-level information transmission network for hierarchical omics data integration and phenotype prediction from a new genotype. He D; Xie L Bioinformatics; 2021 Dec; 38(1):204-210. PubMed ID: 34390577 [TBL] [Abstract][Full Text] [Related]
14. Multimodal deep learning approaches for single-cell multi-omics data integration. Athaya T; Ripan RC; Li X; Hu H Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37651607 [TBL] [Abstract][Full Text] [Related]
15. Integration of multi-omics data using adaptive graph learning and attention mechanism for patient classification and biomarker identification. Ouyang D; Liang Y; Li L; Ai N; Lu S; Yu M; Liu X; Xie S Comput Biol Med; 2023 Sep; 164():107303. PubMed ID: 37586201 [TBL] [Abstract][Full Text] [Related]
16. Deep structure integrative representation of multi-omics data for cancer subtyping. Yang B; Yang Y; Su X Bioinformatics; 2022 Jun; 38(13):3337-3342. PubMed ID: 35639657 [TBL] [Abstract][Full Text] [Related]
17. DeepKEGG: a multi-omics data integration framework with biological insights for cancer recurrence prediction and biomarker discovery. Lan W; Liao H; Chen Q; Zhu L; Pan Y; Chen YP Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678587 [TBL] [Abstract][Full Text] [Related]
18. Multi-omics integration method based on attention deep learning network for biomedical data classification. Gong P; Cheng L; Zhang Z; Meng A; Li E; Chen J; Zhang L Comput Methods Programs Biomed; 2023 Apr; 231():107377. PubMed ID: 36739624 [TBL] [Abstract][Full Text] [Related]
19. Multi-agent Feature Selection for Integrative Multi-omics Analysis. Tabakhi S; Lu H Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1638-1642. PubMed ID: 36086594 [TBL] [Abstract][Full Text] [Related]
20. Super.FELT: supervised feature extraction learning using triplet loss for drug response prediction with multi-omics data. Park S; Soh J; Lee H BMC Bioinformatics; 2021 May; 22(1):269. PubMed ID: 34034645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]