These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36845870)

  • 1. Using UncertainSCI to Quantify Uncertainty in Cardiac Simulations.
    Rupp LC; Liu Z; Bergquist JA; Rampersad S; White D; Tate JD; Brooks DH; Narayan A; MacLeod RS
    Comput Cardiol (2010); 2020 Sep; 47():. PubMed ID: 36845870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UncertainSCI: Uncertainty quantification for computational models in biomedicine and bioengineering.
    Narayan A; Liu Z; Bergquist JA; Charlebois C; Rampersad S; Rupp L; Brooks D; White D; Tate J; MacLeod RS
    Comput Biol Med; 2023 Jan; 152():106407. PubMed ID: 36521358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncertainty Quantification of the Effects of Segmentation Variability in ECGI.
    Tate JD; Good W; Zemzemi N; Boonstra M; van Dam P; Brooks DH; Narayan A; MacLeod RS
    Funct Imaging Model Heart; 2021 Jun; 12738():515-522. PubMed ID: 35449797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of material parameter variability on the predicted coronary artery biomechanical environment via uncertainty quantification.
    Berggren CC; Jiang D; Jack Wang YF; Bergquist JA; Rupp LC; Liu Z; MacLeod RS; Narayan A; Timmins LH
    Biomech Model Mechanobiol; 2024 Jun; 23(3):927-940. PubMed ID: 38361087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainty quantification of the effect of cardiac position variability in the inverse problem of electrocardiographic imaging.
    Bergquist JA; Zenger B; Rupp LC; Busatto A; Tate J; Brooks DH; Narayan A; MacLeod RS
    Physiol Meas; 2023 Oct; 44(10):. PubMed ID: 37734339
    [No Abstract]   [Full Text] [Related]  

  • 6. Influence of Material Parameter Variability on the Predicted Coronary Artery Biomechanical Environment via Uncertainty Quantification.
    Berggren CC; Jiang D; Jack Wang YF; Bergquist JA; Rupp LC; Liu Z; MacLeod RS; Narayan A; Timmins LH
    ArXiv; 2024 Jan; ():. PubMed ID: 38344225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient sampling for polynomial chaos-based uncertainty quantification and sensitivity analysis using weighted approximate Fekete points.
    Burk KM; Narayan A; Orr JA
    Int J Numer Method Biomed Eng; 2020 Nov; 36(11):e3395. PubMed ID: 32794272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncertainty Quantification in Simulations of Myocardial Ischemia.
    Bergquist JA; Zenger B; Rupp LC; Narayan A; Tate J; MacLeod RS
    Comput Cardiol (2010); 2021 Sep; 48():. PubMed ID: 35449764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity analysis of an electrophysiology model for the left ventricle.
    Del Corso G; Verzicco R; Viola F
    J R Soc Interface; 2020 Oct; 17(171):20200532. PubMed ID: 33109017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive Uncertainty Quantification and Sensitivity Analysis for Cardiac Action Potential Models.
    Pathmanathan P; Cordeiro JM; Gray RA
    Front Physiol; 2019; 10():721. PubMed ID: 31297060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised stochastic learning and reduced order modeling for global sensitivity analysis in cardiac electrophysiology models.
    El Moçayd N; Belhamadia Y; Seaid M
    Comput Methods Programs Biomed; 2024 Jul; 255():108311. PubMed ID: 39032242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty Quantification Reveals the Importance of Data Variability and Experimental Design Considerations for
    Chang KC; Dutta S; Mirams GR; Beattie KA; Sheng J; Tran PN; Wu M; Wu WW; Colatsky T; Strauss DG; Li Z
    Front Physiol; 2017; 8():917. PubMed ID: 29209226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications.
    Eck VG; Donders WP; Sturdy J; Feinberg J; Delhaas T; Hellevik LR; Huberts W
    Int J Numer Method Biomed Eng; 2016 Aug; 32(8):. PubMed ID: 26475178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-driven Uncertainty Quantification in Computational Human Head Models.
    Upadhyay K; Giovanis DG; Alshareef A; Knutsen AK; Johnson CL; Carass A; Bayly PV; Shields MD; Ramesh KT
    Comput Methods Appl Mech Eng; 2022 Aug; 398():. PubMed ID: 37994358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response.
    Rodríguez-Cantano R; Sundnes J; Rognes ME
    Int J Numer Method Biomed Eng; 2019 May; 35(5):e3178. PubMed ID: 30632711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generalized polynomial chaos-based uncertainty quantification and propagation in multi-scale modeling of cardiac electrophysiology.
    Hu Z; Du D; Du Y
    Comput Biol Med; 2018 Nov; 102():57-74. PubMed ID: 30248513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-Driven Uncertainty Quantification for Cardiac Electrophysiological Models: Impact of Physiological Variability on Action Potential and Spiral Wave Dynamics.
    Pathmanathan P; Galappaththige SK; Cordeiro JM; Kaboudian A; Fenton FH; Gray RA
    Front Physiol; 2020; 11():585400. PubMed ID: 33329034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practical identifiability and uncertainty quantification of a pulsatile cardiovascular model.
    Marquis AD; Arnold A; Dean-Bernhoft C; Carlson BE; Olufsen MS
    Math Biosci; 2018 Oct; 304():9-24. PubMed ID: 30017910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of an Adaptive Polynomial Chaos Expansion on Computationally Expensive Three-Dimensional Cardiovascular Models for Uncertainty Quantification and Sensitivity Analysis.
    Quicken S; Donders WP; van Disseldorp EM; Gashi K; Mees BM; van de Vosse FN; Lopata RG; Delhaas T; Huberts W
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27636531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Which bidomain conductivity is the most important for modelling heart and torso surface potentials during ischaemia?
    Johnston BM; Johnston PR
    Comput Biol Med; 2021 Oct; 137():104830. PubMed ID: 34534792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.