These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36846828)

  • 1. Exploiting the haptic and audio channels to improve orientation and mobility apps for the visually impaired.
    Paratore MT; Leporini B
    Univers Access Inf Soc; 2023 Feb; ():1-11. PubMed ID: 36846828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The MAPS: Toward a Novel Mobility Assistance System for Visually Impaired People.
    Romeo K; Pissaloux E; Gay SL; Truong NT; Djoussouf L
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Extended Usability and UX Evaluation of a Mobile Application for the Navigation of Individuals with Blindness and Visual Impairments Outdoors-An Evaluation Framework Based on Training.
    Theodorou P; Tsiligkos K; Meliones A; Filios C
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Training Smartphone Application for the Simulation of Outdoor Blind Pedestrian Navigation: Usability, UX Evaluation, Sentiment Analysis.
    Theodorou P; Tsiligkos K; Meliones A; Filios C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of three orientation and mobility aids for individuals with blindness: Verbal description, audio-tactile map and audio-haptic map.
    Papadopoulos K; Koustriava E; Koukourikos P; Kartasidou L; Barouti M; Varveris A; Misiou M; Zacharogeorga T; Anastasiadis T
    Assist Technol; 2017; 29(1):1-7. PubMed ID: 27184731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of an Audio-haptic Sensory Substitution Device for Enhancing Spatial Awareness for the Visually Impaired.
    Hoffmann R; Spagnol S; Kristjánsson Á; Unnthorsson R
    Optom Vis Sci; 2018 Sep; 95(9):757-765. PubMed ID: 30153241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable Urban Mobility Assistive Device for Visually Impaired Pedestrians Using a Smartphone and a Tactile-Foot Interface.
    Tachiquin R; Velázquez R; Del-Valle-Soto C; Gutiérrez CA; Carrasco M; De Fazio R; Trujillo-León A; Visconti P; Vidal-Verdú F
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ASSIST: Evaluating the usability and performance of an indoor navigation assistant for blind and visually impaired people.
    Nair V; Olmschenk G; Seiple WH; Zhu Z
    Assist Technol; 2022 May; 34(3):289-299. PubMed ID: 32790580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-Navigation via Interactive Audio Tactile Maps to Promote the Wellbeing of Visually Impaired People.
    Scase M; Griffin E; Picinali L
    Stud Health Technol Inform; 2019; 260():170-177. PubMed ID: 31118334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the Screen Exploration of Smartphones Using Haptic Icons for Visually Impaired Users.
    González-Cañete FJ; López-Rodríguez JL; Galdón PM; Diaz-Estrella A
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Unfolding Space Glove: A Wearable Spatio-Visual to Haptic Sensory Substitution Device for Blind People.
    Kilian J; Neugebauer A; Scherffig L; Wahl S
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvements in the learnability of smartphone haptic interfaces for visually impaired users.
    González-Cañete FJ; López Rodríguez JL; Galdón PM; Díaz-Estrella A
    PLoS One; 2019; 14(11):e0225053. PubMed ID: 31710628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a "Cobot Tactile Display" for Accessing Virtual Diagrams by Blind and Visually Impaired Users.
    Gill S; Pawluk DTV
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LidSonic V2.0: A LiDAR and Deep-Learning-Based Green Assistive Edge Device to Enhance Mobility for the Visually Impaired.
    Busaeed S; Katib I; Albeshri A; Corchado JM; Yigitcanlar T; Mehmood R
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cognitive and Affective Assessment of Navigation and Mobility Tasks for the Visually Impaired via Electroencephalography and Behavioral Signals.
    Lupu RG; Mitruț O; Stan A; Ungureanu F; Kalimeri K; Moldoveanu A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smartphone-based computer vision travelling aids for blind and visually impaired individuals: A systematic review.
    Budrionis A; Plikynas D; Daniušis P; Indrulionis A
    Assist Technol; 2022 Mar; 34(2):178-194. PubMed ID: 32207640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobile assistive technologies for the visually impaired.
    Hakobyan L; Lumsden J; O'Sullivan D; Bartlett H
    Surv Ophthalmol; 2013; 58(6):513-28. PubMed ID: 24054999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Navigation and Augmented Reality System for Visually Impaired People.
    Lo Valvo A; Croce D; Garlisi D; Giuliano F; Giarré L; Tinnirello I
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33924773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SwingBoard: introducing swipe based virtual keyboard for visually impaired and blind users.
    Ahmed I; Farrok O
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1482-1493. PubMed ID: 37098085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safe Local Navigation for Visually Impaired Users With a Time-of-Flight and Haptic Feedback Device.
    Katzschmann RK; Araki B; Rus D
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):583-593. PubMed ID: 29522402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.