These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 36846955)
1. Framework for dual-energy-like chest radiography image synthesis from single-energy computed tomography based on cycle-consistent generative adversarial network. Lee M; Lee H; Lee D; Cho H; Choi J; Cha BK; Kim K Med Phys; 2024 Feb; 51(2):1509-1530. PubMed ID: 36846955 [TBL] [Abstract][Full Text] [Related]
2. Bone Suppression on Chest Radiographs for Pulmonary Nodule Detection: Comparison between a Generative Adversarial Network and Dual-Energy Subtraction. Bae K; Oh DY; Yun ID; Jeon KN Korean J Radiol; 2022 Jan; 23(1):139-149. PubMed ID: 34983100 [TBL] [Abstract][Full Text] [Related]
3. Separation of bones from soft tissue in chest radiographs: Anatomy-specific orientation-frequency-specific deep neural network convolution. Zarshenas A; Liu J; Forti P; Suzuki K Med Phys; 2019 May; 46(5):2232-2242. PubMed ID: 30848498 [TBL] [Abstract][Full Text] [Related]
4. AI-based computer-aided diagnostic system of chest digital tomography synthesis: Demonstrating comparative advantage with X-ray-based AI systems. Kim K; Lee JH; Je Oh S; Chung MJ Comput Methods Programs Biomed; 2023 Oct; 240():107643. PubMed ID: 37348439 [TBL] [Abstract][Full Text] [Related]
5. Development of a deep neural network for generating synthetic dual-energy chest x-ray images with single x-ray exposure. Lee D; Kim H; Choi B; Kim HJ Phys Med Biol; 2019 May; 64(11):115017. PubMed ID: 31026841 [TBL] [Abstract][Full Text] [Related]
6. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks. Shi Z; Li H; Cao Q; Wang Z; Cheng M Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786 [TBL] [Abstract][Full Text] [Related]
7. Spatial resolution, noise properties, and detectability index of a deep learning reconstruction algorithm for dual-energy CT of the abdomen. Thor D; Titternes R; Poludniowski G Med Phys; 2023 May; 50(5):2775-2786. PubMed ID: 36774193 [TBL] [Abstract][Full Text] [Related]
8. Chest X-ray image phase features for improved diagnosis of COVID-19 using convolutional neural network. Qi X; Brown LG; Foran DJ; Nosher J; Hacihaliloglu I Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):197-206. PubMed ID: 33420641 [TBL] [Abstract][Full Text] [Related]
9. Cascaded systems analysis of noise and detectability in dual-energy cone-beam CT. Gang GJ; Zbijewski W; Webster Stayman J; Siewerdsen JH Med Phys; 2012 Aug; 39(8):5145-56. PubMed ID: 22894440 [TBL] [Abstract][Full Text] [Related]
10. Thorax computed tomography (CTX) guided ground truth annotation of CHEST radiographs (CXR) for improved classification and detection of COVID-19. Ertürk ŞM; Toprak T; Cömert RG; Candemir C; Cingöz E; Akyol Sari ZN; Ercan CC; Düvek E; Ersoy B; Karapinar E; Tunaci A; Selver MA Int J Numer Method Biomed Eng; 2024 Jun; 40(6):e3823. PubMed ID: 38587026 [TBL] [Abstract][Full Text] [Related]
11. Value of bone suppression software in chest radiographs for improving image quality and reducing radiation dose. Hong GS; Do KH; Son AY; Jo KW; Kim KP; Yun J; Lee CW Eur Radiol; 2021 Jul; 31(7):5160-5171. PubMed ID: 33439320 [TBL] [Abstract][Full Text] [Related]
12. A disentangled generative model for disease decomposition in chest X-rays via normal image synthesis. Tang Y; Tang Y; Zhu Y; Xiao J; Summers RM Med Image Anal; 2021 Jan; 67():101839. PubMed ID: 33080508 [TBL] [Abstract][Full Text] [Related]
13. Image denoising by transfer learning of generative adversarial network for dental CT. Hegazy MAA; Cho MH; Lee SY Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255 [TBL] [Abstract][Full Text] [Related]
14. Lung nodule detection by microdose CT versus chest radiography (standard and dual-energy subtracted). Ebner L; Bütikofer Y; Ott D; Huber A; Landau J; Roos JE; Heverhagen JT; Christe A AJR Am J Roentgenol; 2015 Apr; 204(4):727-35. PubMed ID: 25794062 [TBL] [Abstract][Full Text] [Related]
15. Image domain dual material decomposition for dual-energy CT using butterfly network. Zhang W; Zhang H; Wang L; Wang X; Hu X; Cai A; Li L; Niu T; Yan B Med Phys; 2019 May; 46(5):2037-2051. PubMed ID: 30883808 [TBL] [Abstract][Full Text] [Related]
16. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy. Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586 [TBL] [Abstract][Full Text] [Related]
17. Impact of an artificial intelligence deep-learning reconstruction algorithm for CT on image quality and potential dose reduction: A phantom study. Greffier J; Si-Mohamed S; Frandon J; Loisy M; de Oliveira F; Beregi JP; Dabli D Med Phys; 2022 Aug; 49(8):5052-5063. PubMed ID: 35696272 [TBL] [Abstract][Full Text] [Related]
18. Deep learning-based virtual noncalcium imaging in multiple myeloma using dual-energy CT. Gong H; Baffour FI; Glazebrook KN; Rhodes NG; Tiegs-Heiden CA; Thorne JE; Cook JM; Kumar S; Fletcher JG; McCollough CH; Leng S Med Phys; 2022 Oct; 49(10):6346-6358. PubMed ID: 35983992 [TBL] [Abstract][Full Text] [Related]
19. Image synthesis with deep convolutional generative adversarial networks for material decomposition in dual-energy CT from a kilovoltage CT. Kawahara D; Saito A; Ozawa S; Nagata Y Comput Biol Med; 2021 Jan; 128():104111. PubMed ID: 33279790 [TBL] [Abstract][Full Text] [Related]
20. Conventional chest radiography vs dual-energy computed radiography in the detection and characterization of pulmonary nodules. Kelcz F; Zink FE; Peppler WW; Kruger DG; Ergun DL; Mistretta CA AJR Am J Roentgenol; 1994 Feb; 162(2):271-8. PubMed ID: 8310908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]