These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 36847692)

  • 1. IBRAP: integrated benchmarking single-cell RNA-sequencing analytical pipeline.
    Knight CH; Khan F; Patel A; Gill US; Okosun J; Wang J
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36847692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking UMI-based single-cell RNA-seq preprocessing workflows.
    You Y; Tian L; Su S; Dong X; Jabbari JS; Hickey PF; Ritchie ME
    Genome Biol; 2021 Dec; 22(1):339. PubMed ID: 34906205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking imputation methods for network inference using a novel method of synthetic scRNA-seq data generation.
    Lasri A; Shahrezaei V; Sturrock M
    BMC Bioinformatics; 2022 Jun; 23(1):236. PubMed ID: 35715748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supervised application of internal validation measures to benchmark dimensionality reduction methods in scRNA-seq data.
    Koch FC; Sutton GJ; Voineagu I; Vafaee F
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34374742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multicenter study benchmarking single-cell RNA sequencing technologies using reference samples.
    Chen W; Zhao Y; Chen X; Yang Z; Xu X; Bi Y; Chen V; Li J; Choi H; Ernest B; Tran B; Mehta M; Kumar P; Farmer A; Mir A; Mehra UA; Li JL; Moos M; Xiao W; Wang C
    Nat Biotechnol; 2021 Sep; 39(9):1103-1114. PubMed ID: 33349700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments.
    Tian L; Dong X; Freytag S; LĂȘ Cao KA; Su S; JalalAbadi A; Amann-Zalcenstein D; Weber TS; Seidi A; Jabbari JS; Naik SH; Ritchie ME
    Nat Methods; 2019 Jun; 16(6):479-487. PubMed ID: 31133762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data.
    Cheng C; Easton J; Rosencrance C; Li Y; Ju B; Williams J; Mulder HL; Pang Y; Chen W; Chen X
    Nucleic Acids Res; 2019 Dec; 47(22):e143. PubMed ID: 31566233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.
    Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B
    Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beyond benchmarking and towards predictive models of dataset-specific single-cell RNA-seq pipeline performance.
    Fang C; Selega A; Campbell KR
    Genome Biol; 2024 Jun; 25(1):159. PubMed ID: 38886757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How does the structure of data impact cell-cell similarity? Evaluating how structural properties influence the performance of proximity metrics in single cell RNA-seq data.
    Watson ER; Mora A; Taherian Fard A; Mar JC
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36151725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TripletCell: a deep metric learning framework for accurate annotation of cell types at the single-cell level.
    Liu Y; Wei G; Li C; Shen LC; Gasser RB; Song J; Chen D; Yu DJ
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data.
    Yu L; Cao Y; Yang JYH; Yang P
    Genome Biol; 2022 Feb; 23(1):49. PubMed ID: 35135612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of scRNA-seq data analysis method combinations.
    Xu L; Xue T; Ding W; Shen L
    Brief Funct Genomics; 2022 Nov; 21(6):433-440. PubMed ID: 36124658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. popsicleR: A R Package for Pre-processing and Quality Control Analysis of Single Cell RNA-seq Data.
    Grandi F; Caroli J; Romano O; Marchionni M; Forcato M; Bicciato S
    J Mol Biol; 2022 Jun; 434(11):167560. PubMed ID: 35662457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scAnno: a deconvolution strategy-based automatic cell type annotation tool for single-cell RNA-sequencing data sets.
    Liu H; Li H; Sharma A; Huang W; Pan D; Gu Y; Lin L; Sun X; Liu H
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37183449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking Algorithms for Gene Set Scoring of Single-cell ATAC-seq Data.
    Wang X; Lian Q; Dong H; Xu S; Su Y; Wu X
    Genomics Proteomics Bioinformatics; 2024 Jul; 22(2):. PubMed ID: 39049508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis and Visualization of Single-Cell Sequencing Data with Scanpy and MetaCell: A Tutorial.
    Li Y; Sun C; Romanova DY; Wu DO; Fang R; Moroz LL
    Methods Mol Biol; 2024; 2757():383-445. PubMed ID: 38668977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. deCS: A Tool for Systematic Cell Type Annotations of Single-cell RNA Sequencing Data among Human Tissues.
    Pei G; Yan F; Simon LM; Dai Y; Jia P; Zhao Z
    Genomics Proteomics Bioinformatics; 2023 Apr; 21(2):370-384. PubMed ID: 35470070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.