These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 36847810)
1. Quantitative proteomics of sperm tail in asthenozoospermic patients: exploring the molecular pathways affecting sperm motility. Mirshahvaladi S; Topraggaleh TR; Bucak MN; Rahimizadeh P; Shahverdi A Cell Tissue Res; 2023 Jun; 392(3):793-810. PubMed ID: 36847810 [TBL] [Abstract][Full Text] [Related]
2. Identification of proteins involved in human sperm motility using high-throughput differential proteomics. Amaral A; Paiva C; Attardo Parrinello C; Estanyol JM; BallescĂ JL; Ramalho-Santos J; Oliva R J Proteome Res; 2014 Dec; 13(12):5670-84. PubMed ID: 25250979 [TBL] [Abstract][Full Text] [Related]
3. Proteomic profile of human spermatozoa in healthy and asthenozoospermic individuals. Cao X; Cui Y; Zhang X; Lou J; Zhou J; Bei H; Wei R Reprod Biol Endocrinol; 2018 Feb; 16(1):16. PubMed ID: 29482568 [TBL] [Abstract][Full Text] [Related]
4. A quantitative global proteomics approach to understanding the functional pathways dysregulated in the spermatozoa of asthenozoospermic testicular cancer patients. Panner Selvam MK; Agarwal A; Pushparaj PN Andrology; 2019 Jul; 7(4):454-462. PubMed ID: 30924599 [TBL] [Abstract][Full Text] [Related]
5. A proteomic analysis on human sperm tail: comparison between normozoospermia and asthenozoospermia. Hashemitabar M; Sabbagh S; Orazizadeh M; Ghadiri A; Bahmanzadeh M J Assist Reprod Genet; 2015 Jun; 32(6):853-63. PubMed ID: 25825237 [TBL] [Abstract][Full Text] [Related]
6. Proteomic analysis reveals the negative modulator of sperm function glycodelin as over-represented in semen exosomes isolated from asthenozoospermic patients. Murdica V; Cermisoni GC; Zarovni N; Salonia A; Viganò P; Vago R Hum Reprod; 2019 Aug; 34(8):1416-1427. PubMed ID: 31355853 [TBL] [Abstract][Full Text] [Related]
8. Proteomics analysis of asthenozoospermia and identification of glucose-6-phosphate isomerase as an important enzyme for sperm motility. Guo Y; Jiang W; Yu W; Niu X; Liu F; Zhou T; Zhang H; Li Y; Zhu H; Zhou Z; Sha J; Guo X; Chen D J Proteomics; 2019 Sep; 208():103478. PubMed ID: 31394311 [TBL] [Abstract][Full Text] [Related]
9. Testis developmental related gene 1 (TDRG1) encodes a progressive motility-associated protein in human spermatozoa. Chen H; Tang L; Hong Q; Pan T; Weng S; Sun J; Wu Q; Zeng X; Tang Y; Luo T Hum Reprod; 2021 Jan; 36(2):283-292. PubMed ID: 33279973 [TBL] [Abstract][Full Text] [Related]
10. Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MS(E)) reveals altered proteomic signatures in asthenozoospermia. Parte PP; Rao P; Redij S; Lobo V; D'Souza SJ; Gajbhiye R; Kulkarni V J Proteomics; 2012 Oct; 75(18):5861-71. PubMed ID: 22796355 [TBL] [Abstract][Full Text] [Related]
11. Copy number variation of functional RBMY1 is associated with sperm motility: an azoospermia factor-linked candidate for asthenozoospermia. Yan Y; Yang X; Liu Y; Shen Y; Tu W; Dong Q; Yang D; Ma Y; Yang Y Hum Reprod; 2017 Jul; 32(7):1521-1531. PubMed ID: 28498920 [TBL] [Abstract][Full Text] [Related]
12. Sperm mitochondrial dysfunction and oxidative stress as possible reasons for isolated asthenozoospermia. Nowicka-Bauer K; Lepczynski A; Ozgo M; Kamieniczna M; Fraczek M; Stanski L; Olszewska M; Malcher A; Skrzypczak W; Kurpisz MK J Physiol Pharmacol; 2018 Jun; 69(3):. PubMed ID: 30149371 [TBL] [Abstract][Full Text] [Related]
13. Incidence of sperm-tail tyrosine phosphorylation and hyperactivated motility in normozoospermic and asthenozoospermic human sperm samples. Yunes R; Doncel GF; Acosta AA Biocell; 2003 Apr; 27(1):29-36. PubMed ID: 12847912 [TBL] [Abstract][Full Text] [Related]
14. 4D-quantitative proteomics signature of asthenozoospermia and identification of extracellular matrix protein 1 as a novel biomarker for sperm motility. Yang J; Liu Q; Yu B; Han B; Yang B Mol Omics; 2022 Jan; 18(1):83-91. PubMed ID: 34816866 [TBL] [Abstract][Full Text] [Related]
15. Altered Molecular Pathways in the Proteome of Cryopreserved Sperm in Testicular Cancer Patients before Treatment. Panner Selvam MK; Agarwal A; Pushparaj PN Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30764484 [TBL] [Abstract][Full Text] [Related]
16. Sodium-Hydrogen-Exchanger expression in human sperm and its relationship with semen parameters. Zhang Z; Yang Y; Wu H; Zhang H; Zhang H; Mao J; Liu D; Zhao L; Lin H; Tang W; Hong K; Jiang H J Assist Reprod Genet; 2017 Jun; 34(6):795-801. PubMed ID: 28432487 [TBL] [Abstract][Full Text] [Related]
17. Aged men share the sperm protein PATE1 defect with young asthenozoospermia patients. Liu FJ; Liu X; Han JL; Wang YW; Jin SH; Liu XX; Liu J; Wang WT; Wang WJ Hum Reprod; 2015 Apr; 30(4):861-9. PubMed ID: 25637620 [TBL] [Abstract][Full Text] [Related]
18. Proteomic Landscape of Human Sperm in Patients with Different Spermatogenic Impairments. Becker LS; Al Smadi MA; Raeschle M; Rishik S; Abdul-Khaliq H; Meese E; Abu-Halima M Cells; 2023 Mar; 12(7):. PubMed ID: 37048090 [TBL] [Abstract][Full Text] [Related]
19. Outer dense fibers stabilize the axoneme to maintain sperm motility. Zhao W; Li Z; Ping P; Wang G; Yuan X; Sun F J Cell Mol Med; 2018 Mar; 22(3):1755-1768. PubMed ID: 29168316 [TBL] [Abstract][Full Text] [Related]
20. Proteomic analysis of seminal extracellular vesicle proteins involved in asthenozoospermia by iTRAQ. Lin Y; Liang A; He Y; Li Z; Li Z; Wang G; Sun F Mol Reprod Dev; 2019 Sep; 86(9):1094-1105. PubMed ID: 31215738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]