These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36848439)

  • 21. Fluorescent Materials With Aggregation-Induced Emission Characteristics for Array-Based Sensing Assay.
    Zhao E; Lai P; Xu Y; Zhang G; Chen S
    Front Chem; 2020; 8():288. PubMed ID: 32391322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive Supramolecular Networks: Emergent Sensing from Complex Systems.
    Selinger AJ; Hof F
    Angew Chem Int Ed Engl; 2023 Nov; 62(45):e202312407. PubMed ID: 37699200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecularly imprinted polymer sensor arrays.
    Shimizu KD; Stephenson CJ
    Curr Opin Chem Biol; 2010 Dec; 14(6):743-50. PubMed ID: 20685156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bulk and Surface Acoustic Wave Sensor Arrays for Multi-Analyte Detection: A Review.
    Länge K
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supramolecular chemistry approach to the design of a high-resolution sensor array for multianion detection in water.
    Palacios MA; Nishiyabu R; Marquez M; Anzenbacher P
    J Am Chem Soc; 2007 Jun; 129(24):7538-44. PubMed ID: 17530846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A rapid and efficient way to dynamic creation of cross-reactive sensor arrays based on ionic liquids.
    Zhu W; Li W; Yang H; Jiang Y; Wang C; Chen Y; Li G
    Chemistry; 2013 Aug; 19(35):11603-12. PubMed ID: 23873515
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-system based discriminative optical sensors: different strategies and versatile applications.
    Fan J; Ding L
    Analyst; 2018 Aug; 143(16):3775-3788. PubMed ID: 29974083
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overcoming the Limits of Cross-Sensitivity: Pattern Recognition Methods for Chemiresistive Gas Sensor Array.
    Mei H; Peng J; Wang T; Zhou T; Zhao H; Zhang T; Yang Z
    Nanomicro Lett; 2024 Aug; 16(1):269. PubMed ID: 39141168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoscale Electrochemical Sensor Arrays: Redox Cycling Amplification in Dual-Electrode Systems.
    Wolfrum B; Kätelhön E; Yakushenko A; Krause KJ; Adly N; Hüske M; Rinklin P
    Acc Chem Res; 2016 Sep; 49(9):2031-40. PubMed ID: 27602780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rational design of a minimal size sensor array for metal ion detection.
    Palacios MA; Wang Z; Montes VA; Zyryanov GV; Anzenbacher P
    J Am Chem Soc; 2008 Aug; 130(31):10307-14. PubMed ID: 18616249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensing A Paradigm Shift in the Field of Molecular Recognition: From Selective to Differential Receptors.
    Lavigne JJ; Anslyn EV
    Angew Chem Int Ed Engl; 2001 Sep; 40(17):3118-3130. PubMed ID: 29712042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescent Ensemble Sensors and Arrays Based on Surfactant Aggregates Encapsulating Pyrene-Derived Fluorophores for Differentiation Applications.
    Qiao M; Fan J; Ding L; Fang Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18395-18412. PubMed ID: 33871966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoengineering Approaches Toward Artificial Nose.
    Kim S; Brady J; Al-Badani F; Yu S; Hart J; Jung S; Tran TT; Myung NV
    Front Chem; 2021; 9():629329. PubMed ID: 33681147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanowire-based sensor electronics for chemical and biological applications.
    Zhang G; Zeng H; Liu J; Nagashima K; Takahashi T; Hosomi T; Tanaka W; Yanagida T
    Analyst; 2021 Nov; 146(22):6684-6725. PubMed ID: 34667998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-inspired polymer array vapor sensor with dual signals of fluorescence intensity and wavelength shift.
    Zhao Z; Ge Y; Xu L; Sun X; Zuo J; Wang Z; Liu H; Jiang X; Wang D
    Front Bioeng Biotechnol; 2022; 10():1058404. PubMed ID: 36394010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aggregation-Induced Emission Luminogens for Activity-Based Sensing.
    Wang D; Tang BZ
    Acc Chem Res; 2019 Sep; 52(9):2559-2570. PubMed ID: 31436083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Designing optimal sensor arrays: leveraging hard modeling for improved performance.
    Karimvand SK; Abdollahi H
    Mikrochim Acta; 2024 Jun; 191(7):420. PubMed ID: 38916680
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface-Engineered Nanomaterials for Optical Array Based Sensing.
    Behera P; De M
    Chempluschem; 2024 May; 89(5):e202300610. PubMed ID: 38109071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Review on Smart Gas Sensing Technology.
    Feng S; Farha F; Li Q; Wan Y; Xu Y; Zhang T; Ning H
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review on machine learning-powered fluorescent and colorimetric sensor arrays for bacteria identification.
    Yang C; Zhang H
    Mikrochim Acta; 2023 Oct; 190(11):451. PubMed ID: 37880465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.