BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36848659)

  • 1. Induced Piezoelectricity in Cotton-Based Composites for Energy-Harvesting Applications.
    Tiwari S; Devi A; Dubey DK; Maiti P
    ACS Appl Bio Mater; 2023 Apr; 6(4):1536-1545. PubMed ID: 36848659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designer Peptide-PVDF Composite Films for High-Performance Energy Harvesting.
    Patranabish S; Dhawan S; Haridas V; Sinha A
    Macromol Rapid Commun; 2022 Dec; 43(23):e2200493. PubMed ID: 35866581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Halide Tunablility Leads to Enhanced Biomechanical Energy Harvesting in Lead-Free Cs
    Paul T; Sahoo A; Maiti S; Gavali DS; Thapa R; Banerjee R
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34726-34741. PubMed ID: 37440167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Solid-State Shear Milling and FFF 3D-Printing Strategy to Fabricate High-Performance Biomimetic Wearable Fish-Scale PVDF-Based Piezoelectric Energy Harvesters.
    Pei H; Shi S; Chen Y; Xiong Y; Lv Q
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15346-15359. PubMed ID: 35324160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano PDA@Tur-Modified Piezoelectric Sensors for Enhanced Sensitivity and Energy Harvesting.
    Yang R; Ma Y; Cui J; Liu M; Wu Y; Zheng H
    ACS Sens; 2024 Jun; 9(6):3137-3149. PubMed ID: 38812068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Energy Harvester Based on Poly(vinylidene fluoride) Composite Films.
    Yoon S; Shin DJ; Ko YH; Cho KH; Koh JH
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1289-1294. PubMed ID: 30469177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Piezoelectric Properties of Ag-NPs Doped PVDF Nanocomposite Fibres Membrane Prepared by Near Field Electrospinning.
    Pan CT; Dutt K; Yen CK; Kumar A; Kaushik AC; Wei DQ; Kumar A; Wen ZH; Hsu WH; Shiue YL
    Comb Chem High Throughput Screen; 2022; 25(4):720-729. PubMed ID: 33653246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the Energy Storage Performance of All-Polymer Composites By Blending PVDF and P(VDF-CTFE).
    Yi Z; Wang Z; Li Y; Wu D; Xue Y
    Macromol Rapid Commun; 2023 Feb; 44(4):e2200728. PubMed ID: 36153830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lead-Free Perovskite Cs
    Mondal B; Mishra HK; Sengupta D; Kumar A; Babu A; Saini D; Gupta V; Mandal D
    Langmuir; 2022 Oct; 38(40):12157-12172. PubMed ID: 36154054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous high piezoelectricity in poly(vinylidene fluoride) nanoribbons produced by iterative thermal size reduction technique.
    Kanik M; Aktas O; Sen HS; Durgun E; Bayindir M
    ACS Nano; 2014 Sep; 8(9):9311-23. PubMed ID: 25133594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Humidity Sustainable Hydrophobic Poly(vinylidene fluoride)-Carbon Nanotubes Foam Based Piezoelectric Nanogenerator.
    Badatya S; Bharti DK; Sathish N; Srivastava AK; Gupta MK
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27245-27254. PubMed ID: 34096257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose-based magnetoelectric composites.
    Zong Y; Zheng T; Martins P; Lanceros-Mendez S; Yue Z; Higgins MJ
    Nat Commun; 2017 Jun; 8(1):38. PubMed ID: 28659602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Nanogenerator from Electrospun PVDF-Polycarbazole Nanofiber Membranes for Human Motion Energy-Harvesting Device Applications.
    Sengupta A; Das S; Dasgupta S; Sengupta P; Datta P
    ACS Biomater Sci Eng; 2021 Apr; 7(4):1673-1685. PubMed ID: 33683096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyvinylidene fluoride/silk fibroin-based bio-piezoelectric nanofibrous scaffolds for biomedical application.
    Lee JC; Suh IW; Park CH; Kim CS
    J Tissue Eng Regen Med; 2021 Oct; 15(10):869-877. PubMed ID: 34339581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Preparation, Structural Design, and Application of Electroactive Poly(vinylidene fluoride)-Based Materials for Wearable Sensors and Human Energy Harvesters.
    Zhang W; Wu G; Zeng H; Li Z; Wu W; Jiang H; Zhang W; Wu R; Huang Y; Lei Z
    Polymers (Basel); 2023 Jun; 15(13):. PubMed ID: 37447413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organo-Lead Halide Perovskite Induced Electroactive β-Phase in Porous PVDF Films: An Excellent Material for Photoactive Piezoelectric Energy Harvester and Photodetector.
    Sultana A; Sadhukhan P; Alam MM; Das S; Middya TR; Mandal D
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4121-4130. PubMed ID: 29308647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential perovskite surface-termination induced high piezoresponse in lead-free
    Sahoo A; Paul T; Nath A; Maiti S; Kumar P; Ghosh P; Banerjee R
    Nanoscale; 2023 Jul; 15(27):11603-11615. PubMed ID: 37377099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward High Power Generating Piezoelectric Nanofibers: Influence of Particle Size and Surface Electrostatic Interaction of Ce-Fe
    Parangusan H; Ponnamma D; AlMaadeed MAA
    ACS Omega; 2019 Apr; 4(4):6312-6323. PubMed ID: 31459771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ-grown organo-lead bromide perovskite-induced electroactive γ-phase in aerogel PVDF films: an efficient photoactive material for piezoelectric energy harvesting and photodetector applications.
    Si SK; Paria S; Karan SK; Ojha S; Das AK; Maitra A; Bera A; Halder L; De A; Khatua BB
    Nanoscale; 2020 Apr; 12(13):7214-7230. PubMed ID: 32195528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting.
    Szewczyk PK; Gradys A; Kim SK; Persano L; Marzec M; Kryshtal A; Busolo T; Toncelli A; Pisignano D; Bernasik A; Kar-Narayan S; Sajkiewicz P; Stachewicz U
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):13575-13583. PubMed ID: 32090543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.