BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36848829)

  • 1. Evaluation of bioaccumulation of nanoplastics, carbon nanotubes, fullerenes, and graphene family materials.
    Petersen E; Barrios AC; Bjorkland R; Goodwin DG; Li J; Waissi G; Henry T
    Environ Int; 2023 Mar; 173():107650. PubMed ID: 36848829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites.
    Azizi-Lalabadi M; Hashemi H; Feng J; Jafari SM
    Adv Colloid Interface Sci; 2020 Oct; 284():102250. PubMed ID: 32966964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative morpho-physiological and biochemical responses of Capsicum annuum L. plants to multi-walled carbon nanotubes, fullerene C60 and graphene nanoplatelets exposure under water deficit stress.
    Ahmadi SZ; Zahedi B; Ghorbanpour M; Mumivand H
    BMC Plant Biol; 2024 Feb; 24(1):116. PubMed ID: 38365618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioaccumulation, stress, and swimming impairment in Daphnia magna exposed to multiwalled carbon nanotubes, graphene, and graphene oxide.
    Cano AM; Maul JD; Saed M; Shah SA; Green MJ; Cañas-Carrell JE
    Environ Toxicol Chem; 2017 Aug; 36(8):2199-2204. PubMed ID: 28160491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem.
    Hao Y; Ma C; Zhang Z; Song Y; Cao W; Guo J; Zhou G; Rui Y; Liu L; Xing B
    Environ Pollut; 2018 Jan; 232():123-136. PubMed ID: 28947315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the influence of carbon nanomaterials on microbial communities.
    Chen M; Sun Y; Liang J; Zeng G; Li Z; Tang L; Zhu Y; Jiang D; Song B
    Environ Int; 2019 May; 126():690-698. PubMed ID: 30875562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon-based Nanomaterials: Carbon Nanotubes, Graphene, and Fullerenes for the Control of Burn Infections and Wound Healing.
    Rahman MA; Abul Barkat H; Harwansh RK; Deshmukh R
    Curr Pharm Biotechnol; 2022; 23(12):1483-1496. PubMed ID: 35264085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in the application, toxicity and degradation of carbon nanomaterials in environment: A review.
    Peng Z; Liu X; Zhang W; Zeng Z; Liu Z; Zhang C; Liu Y; Shao B; Liang Q; Tang W; Yuan X
    Environ Int; 2020 Jan; 134():105298. PubMed ID: 31765863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Nanomaterials Stimulate HMGB1 Release From Macrophages and Induce Cell Migration and Invasion.
    Cui X; Wan B; Yang Y; Xin Y; Xie YC; Guo LH; Mantell LL
    Toxicol Sci; 2019 Dec; 172(2):398-410. PubMed ID: 31504961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicological Aspects of Carbon Nanotubes, Fullerenes and Graphenes.
    Shah P; Lalan M; Jani D
    Curr Pharm Des; 2021; 27(4):556-564. PubMed ID: 32938342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intravenous injection of unfunctionalized carbon-based nanomaterials confirms the minimal toxicity observed in aqueous and dietary exposures in juvenile rainbow trout (Oncorhynchus mykiss).
    Boyle D; Sutton PA; Handy RD; Henry TB
    Environ Pollut; 2018 Jan; 232():191-199. PubMed ID: 28941714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Safety considerations for graphene: lessons learnt from carbon nanotubes.
    Bussy C; Ali-Boucetta H; Kostarelos K
    Acc Chem Res; 2013 Mar; 46(3):692-701. PubMed ID: 23163827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotubes and nanofibers seen as emerging threat to fish: Historical review and trends.
    Carneiro KDS; Franchi LP; Rocha TL
    Sci Total Environ; 2024 Feb; 913():169483. PubMed ID: 38151128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon-based nanomaterials as inducers of biocompounds in plants: Potential risks and perspectives.
    Sigala-Aguilar NA; López MG; Fernández-Luqueño F
    Plant Physiol Biochem; 2024 Jul; 212():108753. PubMed ID: 38781637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecotoxicological effects of carbon nanomaterials on algae, fungi and plants.
    Basiuk EV; Ochoa-Olmos OE; De la Mora-Estrada LF
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3016-38. PubMed ID: 21776669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing evidence indicates low bioaccumulation of carbon nanotubes.
    Bjorkland R; Tobias D; Petersen EJ
    Environ Sci Nano; 2017; 4(3):747-766. PubMed ID: 28694970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative and mechanistic toxicity assessment of structure-dependent toxicity of carbon-based nanomaterials.
    Jiang T; Lin Y; Amadei CA; Gou N; Rahman SM; Lan J; Vecitis CD; Gu AZ
    J Hazard Mater; 2021 Sep; 418():126282. PubMed ID: 34111749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecotoxicological effects of carbon based nanomaterials in aquatic organisms.
    Freixa A; Acuña V; Sanchís J; Farré M; Barceló D; Sabater S
    Sci Total Environ; 2018 Apr; 619-620():328-337. PubMed ID: 29154051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalized carbon nanomaterials: exploring the interactions with Caco-2 cells for potential oral drug delivery.
    Coyuco JC; Liu Y; Tan BJ; Chiu GN
    Int J Nanomedicine; 2011; 6():2253-63. PubMed ID: 22125408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity and Biotransformation of Carbon-Based Nanomaterials in Marine Microalgae
    Pikula K; Johari SA; Santos-Oliveira R; Golokhvast K
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.