These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 36848875)
1. Incorporating Tantalum Oxide Nanoparticles into Implantable Polymeric Biomedical Devices for Radiological Monitoring. Pawelec KM; Tu E; Chakravarty S; Hix JML; Buchanan L; Kenney L; Buchanan F; Chatterjee N; Das S; Alessio A; Shapiro EM Adv Healthc Mater; 2023 Jul; 12(18):e2203167. PubMed ID: 36848875 [TBL] [Abstract][Full Text] [Related]
2. Incorporating Radiopacity into Implantable Polymeric Biomedical Devices for Clinical Radiological Monitoring. Pawelec KM; Tu E; Chakravarty S; Hix JM; Buchanan L; Kenney L; Buchanan F; Chatterjee N; Das S; Alessio A; Shapiro EM bioRxiv; 2023 Jan; ():. PubMed ID: 36711467 [TBL] [Abstract][Full Text] [Related]
3. In vivo micro-computed tomography evaluation of radiopaque, polymeric device degradation in normal and inflammatory environments. Pawelec KM; Hix JML; Troia A; MacRenaris KW; Kiupel M; Shapiro EM Acta Biomater; 2024 Jun; 181():222-234. PubMed ID: 38648912 [TBL] [Abstract][Full Text] [Related]
4. Material Composition and Implantation Site Affect in vivo Device Degradation Rate. Pawelec KM; Hix JML; Troia A; Kiupel M; Shapiro EM bioRxiv; 2024 Sep; ():. PubMed ID: 39314464 [TBL] [Abstract][Full Text] [Related]
5. Functional attachment of primary neurons and glia on radiopaque implantable biomaterials for nerve repair. Pawelec KM; Hix JML; Shapiro EM Nanomedicine; 2023 Aug; 52():102692. PubMed ID: 37328139 [TBL] [Abstract][Full Text] [Related]
6. In vivo Biomedical Imaging of Immune Tolerant, Radiopaque Nanoparticle-Embedded Polymeric Device Degradation. Pawelec KM; Hix JML; Troia A; Kiupel M; Shapiro E bioRxiv; 2023 Oct; ():. PubMed ID: 37961412 [TBL] [Abstract][Full Text] [Related]
8. Tantalum oxide nanoparticles as versatile contrast agents for X-ray computed tomography. Chakravarty S; Hix JML; Wiewiora KA; Volk MC; Kenyon E; Shuboni-Mulligan DD; Blanco-Fernandez B; Kiupel M; Thomas J; Sempere LF; Shapiro EM Nanoscale; 2020 Apr; 12(14):7720-7734. PubMed ID: 32211669 [TBL] [Abstract][Full Text] [Related]
9. Design Considerations to Facilitate Clinical Radiological Evaluation of Implantable Biomedical Structures. Pawelec KM; Chakravarty S; Hix JML; Perry KL; van Holsbeeck L; Fajardo R; Shapiro EM ACS Biomater Sci Eng; 2021 Feb; 7(2):718-726. PubMed ID: 33449622 [TBL] [Abstract][Full Text] [Related]
10. A Proposed Computed Tomography Contrast Agent Using Carboxybetaine Zwitterionic Tantalum Oxide Nanoparticles: Imaging, Biological, and Physicochemical Performance. FitzGerald PF; Butts MD; Roberts JC; Colborn RE; Torres AS; Lee BD; Yeh BM; Bonitatibus PJ Invest Radiol; 2016 Dec; 51(12):786-796. PubMed ID: 27115702 [TBL] [Abstract][Full Text] [Related]
11. A tantalum oxide-based core/shell nanoparticle for triple-modality image-guided chemo-thermal synergetic therapy of esophageal carcinoma. Jin Y; Ma X; Zhang S; Meng H; Xu M; Yang X; Xu W; Tian J Cancer Lett; 2017 Jul; 397():61-71. PubMed ID: 28351615 [TBL] [Abstract][Full Text] [Related]
12. Computed tomography technologies to measure key structural features of polymeric biomedical implants from bench to bedside. Pawelec KM; Schoborg TA; Shapiro EM J Biomed Mater Res A; 2024 Nov; 112(11):1893-1901. PubMed ID: 38728118 [TBL] [Abstract][Full Text] [Related]
13. Large-scale synthesis of bioinert tantalum oxide nanoparticles for X-ray computed tomography imaging and bimodal image-guided sentinel lymph node mapping. Oh MH; Lee N; Kim H; Park SP; Piao Y; Lee J; Jun SW; Moon WK; Choi SH; Hyeon T J Am Chem Soc; 2011 Apr; 133(14):5508-15. PubMed ID: 21428437 [TBL] [Abstract][Full Text] [Related]
14. Radiopaque fluorescence-transparent TaOx decorated upconversion nanophosphors for in vivo CT/MR/UCL trimodal imaging. Xiao Q; Bu W; Ren Q; Zhang S; Xing H; Chen F; Li M; Zheng X; Hua Y; Zhou L; Peng W; Qu H; Wang Z; Zhao K; Shi J Biomaterials; 2012 Oct; 33(30):7530-9. PubMed ID: 22840224 [TBL] [Abstract][Full Text] [Related]
15. Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Jin Y; Li Y; Ma X; Zha Z; Shi L; Tian J; Dai Z Biomaterials; 2014 Jul; 35(22):5795-804. PubMed ID: 24746966 [TBL] [Abstract][Full Text] [Related]
16. Tantalum oxide nanoparticles as an advanced platform for cancer diagnostics: a review and perspective. Koshevaya E; Krivoshapkina E; Krivoshapkin P J Mater Chem B; 2021 Jun; 9(25):5008-5024. PubMed ID: 34113950 [TBL] [Abstract][Full Text] [Related]
17. Synthesis, characterization, and computed tomography imaging of a tantalum oxide nanoparticle imaging agent. Bonitatibus PJ; Torres AS; Goddard GD; FitzGerald PF; Kulkarni AM Chem Commun (Camb); 2010 Dec; 46(47):8956-8. PubMed ID: 20976321 [TBL] [Abstract][Full Text] [Related]
18. Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging. Lu YC; Yang CX; Yan XP Nanoscale; 2015 Nov; 7(42):17929-37. PubMed ID: 26462601 [TBL] [Abstract][Full Text] [Related]
19. Integration of TaO Jin Y; Tang C; Tian J; Shao B Bioconjug Chem; 2021 Jan; 32(1):161-171. PubMed ID: 33337872 [TBL] [Abstract][Full Text] [Related]
20. Optimization of the differentiation and quantification of high-Z nanoparticles incorporated in medical devices for CT-guided interventions. Perez JVD; Jacobsen MC; Damasco JA; Melancon A; Huang SY; Layman RR; Melancon MP Med Phys; 2021 Jan; 48(1):300-312. PubMed ID: 33216978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]