These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 36849000)

  • 1. Mitochondrial ROS production, oxidative stress and aging within and between species: Evidences and recent advances on this aging effector.
    Gómez J; Mota-Martorell N; Jové M; Pamplona R; Barja G
    Exp Gerontol; 2023 Apr; 174():112134. PubMed ID: 36849000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is the NDUFV2 subunit of the hydrophilic complex I domain a key determinant of animal longevity?
    Pamplona R; Jové M; Mota-Martorell N; Barja G
    FEBS J; 2021 Dec; 288(23):6652-6673. PubMed ID: 33455045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative damage and mutation to mitochondrial DNA and age-dependent decline of mitochondrial respiratory function.
    Wei YH; Lu CY; Lee HC; Pang CY; Ma YS
    Ann N Y Acad Sci; 1998 Nov; 854():155-70. PubMed ID: 9928427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mitochondrial free radical theory of aging: a critical view.
    Sanz A; Stefanatos RK
    Curr Aging Sci; 2008 Mar; 1(1):10-21. PubMed ID: 20021368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging in vertebrates, and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism?
    Barja G
    Biol Rev Camb Philos Soc; 2004 May; 79(2):235-51. PubMed ID: 15191224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress and mitochondrial DNA mutations in human aging.
    Wei YH
    Proc Soc Exp Biol Med; 1998 Jan; 217(1):53-63. PubMed ID: 9421207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria.
    Caro P; Gomez J; Sanchez I; Naudi A; Ayala V; López-Torres M; Pamplona R; Barja G
    Rejuvenation Res; 2009 Dec; 12(6):421-34. PubMed ID: 20041736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging.
    Wang CH; Wu SB; Wu YT; Wei YH
    Exp Biol Med (Maywood); 2013 May; 238(5):450-60. PubMed ID: 23856898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms.
    Scialo F; Mallikarjun V; Stefanatos R; Sanz A
    Antioxid Redox Signal; 2013 Dec; 19(16):1953-69. PubMed ID: 22938137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction.
    Sanchez-Roman I; Barja G
    Exp Gerontol; 2013 Oct; 48(10):1030-42. PubMed ID: 23454735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The role of reactive oxygen species and mitochondria in aging].
    Piotrowska A; Bartnik E
    Postepy Biochem; 2014; 60(2):240-7. PubMed ID: 25134359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free radicals and aging.
    Barja G
    Trends Neurosci; 2004 Oct; 27(10):595-600. PubMed ID: 15374670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial free radical theory of aging: who moved my premise?
    Liu Y; Long J; Liu J
    Geriatr Gerontol Int; 2014 Oct; 14(4):740-9. PubMed ID: 24750368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach.
    Perez-Campo R; López-Torres M; Cadenas S; Rojas C; Barja G
    J Comp Physiol B; 1998 Apr; 168(3):149-58. PubMed ID: 9591361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mitochondrial theory of aging: insight from transgenic and knockout mouse models.
    Jang YC; Van Remmen H
    Exp Gerontol; 2009 Apr; 44(4):256-60. PubMed ID: 19171187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial free radical generation, oxidative stress, and aging.
    Cadenas E; Davies KJ
    Free Radic Biol Med; 2000 Aug; 29(3-4):222-30. PubMed ID: 11035250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations.
    Brennan LA; Kantorow M
    Exp Eye Res; 2009 Feb; 88(2):195-203. PubMed ID: 18588875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondria: multifaceted regulators of aging.
    Son JM; Lee C
    BMB Rep; 2019 Jan; 52(1):13-23. PubMed ID: 30545443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gender differences in free radical homeostasis during aging: shorter-lived female C57BL6 mice have increased oxidative stress.
    Ali SS; Xiong C; Lucero J; Behrens MM; Dugan LL; Quick KL
    Aging Cell; 2006 Dec; 5(6):565-74. PubMed ID: 17129217
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.