These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 36849610)
1. When Competitors Join Forces: Consortia of Entomopathogenic Microorganisms Increase Killing Speed and Mortality in Leaf- and Root-Feeding Insect Hosts. Spescha A; Zwyssig M; Hess Hermida M; Moix A; Bruno P; Enkerli J; Campos-Herrera R; Grabenweger G; Maurhofer M Microb Ecol; 2023 Oct; 86(3):1947-1960. PubMed ID: 36849610 [TBL] [Abstract][Full Text] [Related]
2. Entomopathogenic pseudomonads can share an insect host with entomopathogenic nematodes and their mutualistic bacteria. Zwyssig M; Spescha A; Patt T; Belosevic A; Machado RAR; Regaiolo A; Keel C; Maurhofer M ISME J; 2024 Jan; 18(1):. PubMed ID: 38381653 [TBL] [Abstract][Full Text] [Related]
3. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous exposure of nematophagous fungi, entomopathogenic nematodes and entomopathogenic fungi can modulate belowground insect pest control. Bueno-Pallero FÁ; Blanco-Pérez R; Dionísio L; Campos-Herrera R J Invertebr Pathol; 2018 May; 154():85-94. PubMed ID: 29634923 [TBL] [Abstract][Full Text] [Related]
5. Characterization of Xenorhabdus isolates from La Rioja (Northern Spain) and virulence with and without their symbiotic entomopathogenic nematodes (Nematoda: Steinernematidae). Campos-Herrera R; Tailliez P; Pagès S; Ginibre N; Gutiérrez C; Boemare NE J Invertebr Pathol; 2009 Oct; 102(2):173-81. PubMed ID: 19682458 [TBL] [Abstract][Full Text] [Related]
6. Scavenging behavior and interspecific competition decrease offspring fitness of the entomopathogenic nematode Steinernema feltiae. Blanco-Pérez R; Bueno-Pallero FÁ; Vicente-Díez I; Marco-Mancebón VS; Pérez-Moreno I; Campos-Herrera R J Invertebr Pathol; 2019 Jun; 164():5-15. PubMed ID: 30974088 [TBL] [Abstract][Full Text] [Related]
7. Influence of cell density and phase variants of bacterial symbionts (Xenorhabdus spp.) on dauer juvenile recovery and development of biocontrol nematodes Steinernema carpocapsae and S. feltiae (Nematoda: Rhabditida). Hirao A; Ehlers RU Appl Microbiol Biotechnol; 2009 Aug; 84(1):77-85. PubMed ID: 19319521 [TBL] [Abstract][Full Text] [Related]
8. Insecticidal activities of the local entomopathogenic nematodes and cell-free supernatants from their symbiotic bacteria against the larvae of fall webworm, Hyphantriacunea. Yüksel E; Özdemir E; Albayrak Delialioğlu R; Canhilal R Exp Parasitol; 2022 Nov; 242():108380. PubMed ID: 36116520 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of entomopathogenic nematodes and the supernatants of the in vitro culture medium of their mutualistic bacteria for the control of the root-knot nematodes Meloidogyne incognita and M. arenaria. Kepenekci I; Hazir S; Lewis EE Pest Manag Sci; 2016 Feb; 72(2):327-34. PubMed ID: 25721911 [TBL] [Abstract][Full Text] [Related]
11. Morphological and molecular profiling of an entomopathogenic nematode Steinernema feltiae: Unlocking its biocontrol potential against vegetable insect pests. Janardhan HN; Askary TH; Bhat AH; Rana A; Ahad I; Al-Qahtani WH Zootaxa; 2023 Sep; 5351(2):202-220. PubMed ID: 38221492 [TBL] [Abstract][Full Text] [Related]
12. Interspecific competition between entomopathogenic nematodes (Steinernema) is modified by their bacterial symbionts (Xenorhabdus). Sicard M; Hinsinger J; Le Brun N; Pages S; Boemare N; Moulia C BMC Evol Biol; 2006 Sep; 6():68. PubMed ID: 16953880 [TBL] [Abstract][Full Text] [Related]
13. Molecular and Phenotypic Characterization of Heterorhabditis indica (Nematoda: Rhabditida) Nematodes Isolated During a Survey of Agricultural Soils in Western Uttar Pradesh, India. Bhat AH; Chaubey AK; Shokoohi E; Machado RAR Acta Parasitol; 2021 Mar; 66(1):236-252. PubMed ID: 32970280 [TBL] [Abstract][Full Text] [Related]
15. Laboratory Evaluation of Isaria fumosorosea CCM 8367 and Steinernema feltiae Ustinov against Immature Stages of the Colorado Potato Beetle. Hussein HM; Skoková Habuštová O; Půža V; Zemek R PLoS One; 2016; 11(3):e0152399. PubMed ID: 27015633 [TBL] [Abstract][Full Text] [Related]
16. Enhancing entomopathogenic nematode efficacy with Pheromones: A field study targeting the pecan weevil. Perier JD; Kaplan F; Lewis EE; Alborn H; Schliekelman P; Toews MD; Schiller KC; Shapiro-Ilan DI J Invertebr Pathol; 2024 Mar; 203():108070. PubMed ID: 38311231 [TBL] [Abstract][Full Text] [Related]
17. Effect of Temperature and Host Life Stage on Efficacy of Soil Entomopathogens Against the Swede Midge (Diptera: Cecidomyiidae). Evans BG; Jordan KS; Brownbridge M; Hallett RH J Econ Entomol; 2015 Apr; 108(2):473-83. PubMed ID: 26470158 [TBL] [Abstract][Full Text] [Related]
18. Pheromone extracts act as boosters for entomopathogenic nematodes efficacy. Oliveira-Hofman C; Kaplan F; Stevens G; Lewis E; Wu S; Alborn HT; Perret-Gentil A; Shapiro-Ilan DI J Invertebr Pathol; 2019 Jun; 164():38-42. PubMed ID: 31034842 [TBL] [Abstract][Full Text] [Related]
19. Combined application of entomopathogenic nematodes and fungi against fruit flies, Bactrocera zonata and B. dorsalis (Diptera: Tephritidae): laboratory cups to field study. Wakil W; Usman M; Piñero JC; Wu S; Toews MD; Shapiro-Ilan DI Pest Manag Sci; 2022 Jul; 78(7):2779-2791. PubMed ID: 35365867 [TBL] [Abstract][Full Text] [Related]
20. Symbiont-mediated competition: Xenorhabdus bovienii confer an advantage to their nematode host Steinernema affine by killing competitor Steinernema feltiae. Murfin KE; Ginete DR; Bashey F; Goodrich-Blair H Environ Microbiol; 2018 May; ():. PubMed ID: 29799156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]