These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 36849610)
101. Sequestration of cucurbitacins from cucumber plants by Bruno P; Arce CCM; Machado RAR; Besomi G; Spescha A; Glauser G; Jaccard C; Benrey B; Turlings TCJ J Pest Sci (2004); 2023; 96(3):1061-1075. PubMed ID: 37181825 [TBL] [Abstract][Full Text] [Related]
102. Opportunities for optimizing fungal biological control agents for long-term and effective management of insect pests of orchards and vineyards: a review. Wallis CM; Sisterson MS Front Fungal Biol; 2024; 5():1443343. PubMed ID: 39149520 [TBL] [Abstract][Full Text] [Related]
103. The genome of a steinernematid-associated Awori RM; Hendre P; Amugune NO Access Microbiol; 2023; 5(10):. PubMed ID: 37970093 [TBL] [Abstract][Full Text] [Related]
104. When Competitors Join Forces: Consortia of Entomopathogenic Microorganisms Increase Killing Speed and Mortality in Leaf- and Root-Feeding Insect Hosts. Spescha A; Zwyssig M; Hess Hermida M; Moix A; Bruno P; Enkerli J; Campos-Herrera R; Grabenweger G; Maurhofer M Microb Ecol; 2023 Oct; 86(3):1947-1960. PubMed ID: 36849610 [TBL] [Abstract][Full Text] [Related]
105. Entomopathogenic pseudomonads can share an insect host with entomopathogenic nematodes and their mutualistic bacteria. Zwyssig M; Spescha A; Patt T; Belosevic A; Machado RAR; Regaiolo A; Keel C; Maurhofer M ISME J; 2024 Jan; 18(1):. PubMed ID: 38381653 [TBL] [Abstract][Full Text] [Related]
106. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
107. Simultaneous exposure of nematophagous fungi, entomopathogenic nematodes and entomopathogenic fungi can modulate belowground insect pest control. Bueno-Pallero FÁ; Blanco-Pérez R; Dionísio L; Campos-Herrera R J Invertebr Pathol; 2018 May; 154():85-94. PubMed ID: 29634923 [TBL] [Abstract][Full Text] [Related]
108. Characterization of Xenorhabdus isolates from La Rioja (Northern Spain) and virulence with and without their symbiotic entomopathogenic nematodes (Nematoda: Steinernematidae). Campos-Herrera R; Tailliez P; Pagès S; Ginibre N; Gutiérrez C; Boemare NE J Invertebr Pathol; 2009 Oct; 102(2):173-81. PubMed ID: 19682458 [TBL] [Abstract][Full Text] [Related]
109. Natural products from Photorhabdus and Xenorhabdus: mechanisms and impacts. Cimen H; Touray M; Gulsen SH; Hazir S Appl Microbiol Biotechnol; 2022 Jun; 106(12):4387-4399. PubMed ID: 35723692 [TBL] [Abstract][Full Text] [Related]
110. The secret life of plant-beneficial rhizosphere bacteria: insects as alternative hosts. Pronk LJU; Bakker PAHM; Keel C; Maurhofer M; Flury P Environ Microbiol; 2022 Aug; 24(8):3273-3289. PubMed ID: 35315557 [TBL] [Abstract][Full Text] [Related]
111. Phylogenetically closely related pseudomonads isolated from arthropods exhibit differential insect-killing abilities and genetic variations in insecticidal factors. Vesga P; Augustiny E; Keel C; Maurhofer M; Vacheron J Environ Microbiol; 2021 Sep; 23(9):5378-5394. PubMed ID: 34190383 [TBL] [Abstract][Full Text] [Related]
112. Transcriptome plasticity underlying plant root colonization and insect invasion by Pseudomonas protegens. Vesga P; Flury P; Vacheron J; Keel C; Croll D; Maurhofer M ISME J; 2020 Nov; 14(11):2766-2782. PubMed ID: 32879461 [TBL] [Abstract][Full Text] [Related]
113. Complex Relationships at the Intersection of Insect Gut Microbiomes and Plant Defenses. Mason CJ J Chem Ecol; 2020 Aug; 46(8):793-807. PubMed ID: 32537721 [TBL] [Abstract][Full Text] [Related]
114. Entomopathogenic nematode-associated microbiota: from monoxenic paradigm to pathobiome. Ogier JC; Pagès S; Frayssinet M; Gaudriault S Microbiome; 2020 Feb; 8(1):25. PubMed ID: 32093774 [TBL] [Abstract][Full Text] [Related]